These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24697376)

  • 1. Classification of attractors for systems of identical coupled Kuramoto oscillators.
    Engelbrecht JR; Mirollo R
    Chaos; 2014 Mar; 24(1):013114. PubMed ID: 24697376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.
    Chen B; Engelbrecht JR; Mirollo R
    Phys Rev E; 2017 Feb; 95(2-1):022207. PubMed ID: 28297946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter.
    Chen B; Engelbrecht JR; Mirollo R
    Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of long-term average frequencies for Kuramoto oscillator systems.
    Engelbrecht JR; Mirollo R
    Phys Rev Lett; 2012 Jul; 109(3):034103. PubMed ID: 22861856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic chimera attractors in a triangular network of identical oscillators.
    Lee S; Krischer K
    Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of network coupled phase oscillators: an ensemble approach.
    Barlev G; Antonsen TM; Ott E
    Chaos; 2011 Jun; 21(2):025103. PubMed ID: 21721781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical aging of classical oscillators.
    Ionita F; Meyer-Ortmanns H
    Phys Rev Lett; 2014 Mar; 112(9):094101. PubMed ID: 24655254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude death in coupled chaotic oscillators.
    Prasad A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056204. PubMed ID: 16383724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Order parameter allows classification of planar graphs based on balanced fixed points in the Kuramoto model.
    Kaiser F; Alim K
    Phys Rev E; 2019 May; 99(5-1):052308. PubMed ID: 31212471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary mixtures of locally coupled mobile oscillators.
    Paulo G; Tasinkevych M
    Phys Rev E; 2021 Jul; 104(1-1):014204. PubMed ID: 34412317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimera states in coupled Kuramoto oscillators with inertia.
    Olmi S
    Chaos; 2015 Dec; 25(12):123125. PubMed ID: 26723164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity.
    Ratas I; Pyragas K; Tass PA
    Sci Rep; 2021 May; 11(1):9840. PubMed ID: 33972613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase chaos in coupled oscillators.
    Popovych OV; Maistrenko YL; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065201. PubMed ID: 16089804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense networks that do not synchronize and sparse ones that do.
    Townsend A; Stillman M; Strogatz SH
    Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos in Kuramoto oscillator networks.
    Bick C; Panaggio MJ; Martens EA
    Chaos; 2018 Jul; 28(7):071102. PubMed ID: 30070510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceptual grouping by entrainment in coupled Kuramoto oscillator networks.
    Meier M; Haschke R; Ritter HJ
    Network; 2014; 25(1-2):72-84. PubMed ID: 24571099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators.
    Ha SY; Lee J; Li Z
    Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins, and quasiriddling.
    Wontchui TT; Effa JY; Fouda HPE; Ujjwal SR; Ramaswamy R
    Phys Rev E; 2017 Dec; 96(6-1):062203. PubMed ID: 29347357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.