These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 24697450)
1. The exothermic HCl + OH·(H2O) reaction: removal of the HCl + OH barrier by a single water molecule. Li G; Wang H; Li QS; Xie Y; Schaefer HF J Chem Phys; 2014 Mar; 140(12):124316. PubMed ID: 24697450 [TBL] [Abstract][Full Text] [Related]
2. Communication: Some critical features of the potential energy surface for the Cl + H2O → HCl + OH forward and reverse reactions. Guo Y; Zhang M; Xie Y; Schaefer HF J Chem Phys; 2013 Jul; 139(4):041101. PubMed ID: 23901951 [TBL] [Abstract][Full Text] [Related]
3. The Reaction between Bromine and the Water Dimer and the Highly Exothermic Reverse Reaction. Li G; Wang H; Li QS; Xie Y; Schaefer HF J Comput Chem; 2016 Jan; 37(2):177-82. PubMed ID: 26040856 [TBL] [Abstract][Full Text] [Related]
4. Spin-orbit corrected potential energy surface features for the I ((2)P(3/2)) + H2O → HI + OH forward and reverse reactions. Hao Y; Gu J; Guo Y; Zhang M; Xie Y; Schaefer HF Phys Chem Chem Phys; 2014 Feb; 16(6):2641-6. PubMed ID: 24382520 [TBL] [Abstract][Full Text] [Related]
5. Potential energy profile for the Cl + (H Li G; Yao Y; Lü S; Xie Y; Douberly GE; Schaefer HF Phys Chem Chem Phys; 2021 Dec; 23(47):26837-26842. PubMed ID: 34817485 [TBL] [Abstract][Full Text] [Related]
6. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling. Wang H; Li G; Li QS; Xie Y; Schaefer HF J Phys Chem B; 2016 Mar; 120(8):1743-8. PubMed ID: 26562487 [TBL] [Abstract][Full Text] [Related]
8. F + (H2O)2 reaction: the second water removes the barrier. Li G; Li QS; Xie Y; Schaefer HF J Phys Chem A; 2013 Nov; 117(46):11979-82. PubMed ID: 23859477 [TBL] [Abstract][Full Text] [Related]
9. The reaction between the bromine atom and the water trimer: high level theoretical studies. Li G; Yao Y; Lin Y; Meng Y; Xie Y; Schaefer HF Phys Chem Chem Phys; 2022 Nov; 24(42):26164-26169. PubMed ID: 36278301 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
16. The Hydrogen Abstraction Reaction H Tang M; Chen X; Sun Z; Xie Y; Schaefer HF J Phys Chem A; 2017 Nov; 121(47):9136-9145. PubMed ID: 29112437 [TBL] [Abstract][Full Text] [Related]
17. Pathways for the OH + Br2 → HOBr + Br and HOBr + Br → HBr + BrO Reactions. Wang H; Qiu Y; Schaefer HF J Phys Chem A; 2016 Feb; 120(5):805-16. PubMed ID: 26766412 [TBL] [Abstract][Full Text] [Related]
18. Peptide bond formation via glycine condensation in the gas phase. Van Dornshuld E; Vergenz RA; Tschumper GS J Phys Chem B; 2014 Jul; 118(29):8583-90. PubMed ID: 24992687 [TBL] [Abstract][Full Text] [Related]
19. Is there an entrance complex for the F+NH3 reaction? Feng H; Sun W; Xie Y; Schaefer HF Chem Asian J; 2011 Nov; 6(11):3152-6. PubMed ID: 21928432 [TBL] [Abstract][Full Text] [Related]