These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24697482)

  • 1. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.
    Harada R; Takano Y; Shigeta Y
    J Chem Phys; 2014 Mar; 140(12):125103. PubMed ID: 24697482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Cascade Selection Molecular Dynamics (PaCS-MD) to generate conformational transition pathway.
    Harada R; Kitao A
    J Chem Phys; 2013 Jul; 139(3):035103. PubMed ID: 23883057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-the-Fly Specifications of Reaction Coordinates in Parallel Cascade Selection Molecular Dynamics Accelerate Conformational Transitions of Proteins.
    Harada R; Shigeta Y
    J Chem Theory Comput; 2018 Jun; 14(6):3332-3341. PubMed ID: 29727581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparsity-weighted outlier FLOODing (OFLOOD) method: Efficient rare event sampling method using sparsity of distribution.
    Harada R; Nakamura T; Shigeta Y
    J Comput Chem; 2016 Mar; 37(8):724-38. PubMed ID: 26611770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transform and relax sampling for highly anisotropic systems: application to protein domain motion and folding.
    Kitao A
    J Chem Phys; 2011 Jul; 135(4):045101. PubMed ID: 21806159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nontargeted Parallel Cascade Selection Molecular Dynamics Based on a Nonredundant Selection Rule for Initial Structures Enhances Conformational Sampling of Proteins.
    Harada R; Sladek V; Shigeta Y
    J Chem Inf Model; 2019 Dec; 59(12):5198-5206. PubMed ID: 31697897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting coupled collective motions in protein by independent subspace analysis.
    Sakuraba S; Joti Y; Kitao A
    J Chem Phys; 2010 Nov; 133(18):185102. PubMed ID: 21073231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Sampling of Protein Conformational Transitions via Dynamically Optimized Collective Variables.
    Brotzakis ZF; Parrinello M
    J Chem Theory Comput; 2019 Feb; 15(2):1393-1398. PubMed ID: 30557019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nontargeted Parallel Cascade Selection Molecular Dynamics Using Time-Localized Prediction of Conformational Transitions in Protein Dynamics.
    Harada R; Sladek V; Shigeta Y
    J Chem Theory Comput; 2019 Sep; 15(9):5144-5153. PubMed ID: 31411882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes.
    Arnold GE; Ornstein RL
    Biopolymers; 1997 Apr; 41(5):533-44. PubMed ID: 9095676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing Multiple Pathways in T4 Lysozyme Substep Conformational Motions by Single-Molecule Enzymology and Modeling.
    Lu M; Lu HP
    J Phys Chem B; 2017 May; 121(19):5017-5024. PubMed ID: 28425708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing time bunching effect in single-molecule enzyme conformational dynamics.
    Lu HP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6734-49. PubMed ID: 21409227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of an insertion/duplication mutant of bacteriophage T4 lysozyme reveals the nature of α→β transition in full protein context.
    Kaur H; Sasidhar YU
    Phys Chem Chem Phys; 2013 May; 15(20):7819-30. PubMed ID: 23598905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotamer decomposition and protein dynamics: efficiently analyzing dihedral populations from molecular dynamics.
    Watanabe H; Elstner M; Steinbrecher T
    J Comput Chem; 2013 Jan; 34(3):198-205. PubMed ID: 23007849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nontargeted Parallel Cascade Selection Molecular Dynamics for Enhancing the Conformational Sampling of Proteins.
    Harada R; Kitao A
    J Chem Theory Comput; 2015 Nov; 11(11):5493-502. PubMed ID: 26574337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Validation of Reaction Coordinates Describing Protein Functional Motion: Hierarchical Dynamics of T4 Lysozyme.
    Ernst M; Wolf S; Stock G
    J Chem Theory Comput; 2017 Oct; 13(10):5076-5088. PubMed ID: 28915045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
    Schiffer JM; Feher VA; Malmstrom RD; Sida R; Amaro RE
    Biophys J; 2016 Oct; 111(8):1631-1640. PubMed ID: 27760351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Shuffled Structural Dissimilarity Sampling Based on a Root-Mean-Square Deviation.
    Harada R; Shigeta Y
    J Chem Inf Model; 2018 Jul; 58(7):1397-1405. PubMed ID: 29882667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of an engineered T4 lysozyme exclude helix to sheet transition, and provide insights into long distance, intra-protein switchable motion.
    Biggers L; Elhabashy H; Ackad E; Yousef MS
    Protein Sci; 2020 Feb; 29(2):542-554. PubMed ID: 31702853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.