These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24697520)

  • 1. Neither Lippmann nor Young: enabling electrowetting modeling on structured dielectric surfaces.
    Chamakos NT; Kavousanakis ME; Papathanasiou AG
    Langmuir; 2014 Apr; 30(16):4662-70. PubMed ID: 24697520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces.
    Chamakos NT; Kavousanakis ME; Papathanasiou AG
    Soft Matter; 2013 Oct; 9(40):9624-32. PubMed ID: 26029771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting of solid surfaces: fundamentals and charge effects.
    Koopal LK
    Adv Colloid Interface Sci; 2012 Nov; 179-182():29-42. PubMed ID: 22819385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces.
    Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M
    Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G; Orme BV; Wells GG; Ledesma-Aguilar R
    Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale.
    Zhao YP; Yuan Q
    Nanoscale; 2015 Feb; 7(6):2561-7. PubMed ID: 25578630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of wetting state switching of droplets on superhydrophobic microstructured surfaces by external electric field.
    Wen K; Chen X; Cheng S; Wang X; Ma H; Song Q; Zhao Q; Tian H; Zhang J; Shao J
    J Colloid Interface Sci; 2024 Oct; 672():533-542. PubMed ID: 38852354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting and wetting transitions on copper-based super-hydrophobic surfaces.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC
    Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of submicron particles on electrowetting on dielectrics (EWOD) of sessile droplets.
    Chakraborty D; Sudha GS; Chakraborty S; DasGupta S
    J Colloid Interface Sci; 2011 Nov; 363(2):640-5. PubMed ID: 21855084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrowetting -- from statics to dynamics.
    Chen L; Bonaccurso E
    Adv Colloid Interface Sci; 2014 Aug; 210():2-12. PubMed ID: 24268972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrowetting-based control of static droplet states on rough surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2007 Apr; 23(9):4918-24. PubMed ID: 17373831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.