These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 24697542)

  • 1. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2012 May; 46(9):5230-9. PubMed ID: 22463483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.
    Veerman J; Saakes M; Metz SJ; Harmsen GJ
    Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
    Yip NY; Brogioli D; Hamelers HV; Nijmeijer K
    Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doubled power density from salinity gradients at reduced intermembrane distance.
    Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).
    Pawlowski S; Galinha CF; Crespo JG; Velizarov S
    Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.
    Guler E; Zhang Y; Saakes M; Nijmeijer K
    ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.
    Zhang B; Gao H; Chen Y
    Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.
    Straub AP; Lin S; Elimelech M
    Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating reverse electrodialysis with constant current operating capacitive deionization.
    Jande YAC; Kim WS
    J Environ Manage; 2014 Dec; 146():463-469. PubMed ID: 25150096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.
    Lee JY; Kim JH; Lee JH; Kim S; Moon SH
    Environ Sci Technol; 2015 Jul; 49(14):8872-7. PubMed ID: 26114376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upscaling Reverse Electrodialysis.
    Moreno J; Grasman S; van Engelen R; Nijmeijer K
    Environ Sci Technol; 2018 Sep; 52(18):10856-10863. PubMed ID: 30102521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients.
    Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S
    Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.