These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 24697546)
21. Attempts to develop an enzyme converting DHIV to KIV. Oki K; Lee FS; Mayo SL Protein Eng Des Sel; 2019 Dec; 32(6):261-270. PubMed ID: 31872250 [TBL] [Abstract][Full Text] [Related]
22. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases. Andberg M; Aro-Kärkkäinen N; Carlson P; Oja M; Bozonnet S; Toivari M; Hakulinen N; O'Donohue M; Penttilä M; Koivula A Appl Microbiol Biotechnol; 2016 Sep; 100(17):7549-63. PubMed ID: 27102126 [TBL] [Abstract][Full Text] [Related]
23. Structure and function of a decarboxylating Agrobacterium tumefaciens keto-deoxy-d-galactarate dehydratase. Taberman H; Andberg M; Parkkinen T; Jänis J; Penttilä M; Hakulinen N; Koivula A; Rouvinen J Biochemistry; 2014 Dec; 53(51):8052-60. PubMed ID: 25454257 [TBL] [Abstract][Full Text] [Related]
24. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Hubbard BK; Koch M; Palmer DR; Babbitt PC; Gerlt JA Biochemistry; 1998 Oct; 37(41):14369-75. PubMed ID: 9772162 [TBL] [Abstract][Full Text] [Related]
25. [Individuality of mannonate and altronate hydro-lyases in Escherichia coli K 12]. Robert-Baudouy JM; Jimeno-Abendano J; Stoeber FR Biochimie; 1975; 57(1):1-8. PubMed ID: 1096964 [TBL] [Abstract][Full Text] [Related]
26. Interrogating l-fuconate dehydratase with tartronate and 3-hydroxypyruvate reveals subtle differences within the mandelate racemase-subgroup of the enolase superfamily. McGary LC; Fetter CM; Gu M; Hamilton MC; Kumar H; Kuehm OP; Douglas CD; Bearne SL Arch Biochem Biophys; 2024 Apr; 754():109924. PubMed ID: 38354877 [TBL] [Abstract][Full Text] [Related]
27. Altering the binding determinant on the interdigitating loop of mandelate racemase shifts specificity towards that of d-tartrate dehydratase. Nagar M; Hayden JA; Sagey E; Worthen G; Park M; Sharma AN; Fetter CM; Kuehm OP; Bearne SL Arch Biochem Biophys; 2022 Mar; 718():109119. PubMed ID: 35016855 [TBL] [Abstract][Full Text] [Related]
28. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids. Sakai A; Xiang DF; Xu C; Song L; Yew WS; Raushel FM; Gerlt JA Biochemistry; 2006 Apr; 45(14):4455-62. PubMed ID: 16584181 [TBL] [Abstract][Full Text] [Related]
29. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
31. D-Mannonate and D-altronate dehydratases of Escherichia coli K12. Robert-Baudouy J; Jimeno-Abendano J; Stoeber F Methods Enzymol; 1982; 90 Pt E():288-94. PubMed ID: 6759855 [No Abstract] [Full Text] [Related]
32. Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment. Rosas-Lemus M; Minasov G; Shuvalova L; Wawrzak Z; Kiryukhina O; Mih N; Jaroszewski L; Palsson B; Godzik A; Satchell KJF Protein Sci; 2020 Mar; 29(3):711-722. PubMed ID: 31811683 [TBL] [Abstract][Full Text] [Related]
33. Substrate and metabolic promiscuities of d-altronate dehydratase family proteins involved in non-phosphorylative d-arabinose, sugar acid, l-galactose and l-fucose pathways from bacteria. Watanabe S; Fukumori F; Watanabe Y Mol Microbiol; 2019 Jul; 112(1):147-165. PubMed ID: 30985034 [TBL] [Abstract][Full Text] [Related]
34. Categorisation of sugar acid dehydratases in Aspergillus niger. Motter FA; Kuivanen J; Keränen H; Hilditch S; Penttilä M; Richard P Fungal Genet Biol; 2014 Mar; 64():67-72. PubMed ID: 24382357 [TBL] [Abstract][Full Text] [Related]
35. Identification and characterization of two new 5-keto-4-deoxy-D-Glucarate Dehydratases/Decarboxylases. Pick A; Beer B; Hemmi R; Momma R; Schmid J; Miyamoto K; Sieber V BMC Biotechnol; 2016 Nov; 16(1):80. PubMed ID: 27855668 [TBL] [Abstract][Full Text] [Related]
36. Characterization of D-xylonate dehydratase YjhG from Escherichia coli. Jiang Y; Liu W; Cheng T; Cao Y; Zhang R; Xian M Bioengineered; 2015; 6(4):227-32. PubMed ID: 26083940 [TBL] [Abstract][Full Text] [Related]
37. Characterization of highly active 2-keto-3-deoxy-L-arabinonate and 2-keto-3-deoxy-D-xylonate dehydratases in terms of the biotransformation of hemicellulose sugars to chemicals. Sutiono S; Siebers B; Sieber V Appl Microbiol Biotechnol; 2020 Aug; 104(16):7023-7035. PubMed ID: 32566996 [TBL] [Abstract][Full Text] [Related]
38. The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids. Babbitt PC; Hasson MS; Wedekind JE; Palmer DR; Barrett WC; Reed GH; Rayment I; Ringe D; Kenyon GL; Gerlt JA Biochemistry; 1996 Dec; 35(51):16489-501. PubMed ID: 8987982 [TBL] [Abstract][Full Text] [Related]
39. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
40. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals. Carsten JM; Schmidt A; Sieber V J Biotechnol; 2015 Oct; 211():31-41. PubMed ID: 26102631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]