BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24697567)

  • 41. Dioxygen-Derived Nonheme Mononuclear Fe
    Yadav V; Gordon JB; Siegler MA; Goldberg DP
    J Am Chem Soc; 2019 Jul; 141(26):10148-10153. PubMed ID: 31244183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioinspired oxidation of oximes to nitric oxide with dioxygen by a nonheme iron(II) complex.
    Bhattacharya S; Lakshman TR; Sutradhar S; Tiwari CK; Paine TK
    J Biol Inorg Chem; 2020 Feb; 25(1):3-11. PubMed ID: 31637527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron(III) complexes of N2O and N3O donor ligands as functional models for catechol dioxygenase enzymes: ether oxygen coordination tunes the regioselectivity and reactivity.
    Sundaravel K; Suresh E; Saminathan K; Palaniandavar M
    Dalton Trans; 2011 Aug; 40(32):8092-107. PubMed ID: 21766098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling the electronic structures of low-valent naphthalene and anthracene iron complexes: X-ray, spectroscopic, and density functional theory studies.
    Schnöckelborg EM; Khusniyarov MM; de Bruin B; Hartl F; Langer T; Eul M; Schulz S; Pöttgen R; Wolf R
    Inorg Chem; 2012 Jun; 51(12):6719-30. PubMed ID: 22639983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis.
    Yadav V; Wen L; Rodriguez RJ; Siegler MA; Goldberg DP
    J Am Chem Soc; 2022 Nov; 144(45):20641-20652. PubMed ID: 36382466
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes.
    Namuswe F; Kasper GD; Sarjeant AA; Hayashi T; Krest CM; Green MT; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2008 Oct; 130(43):14189-200. PubMed ID: 18837497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectroscopic and Computational Comparisons of Thiolate-Ligated Ferric Nonheme Complexes to Cysteine Dioxygenase: Second-Sphere Effects on Substrate (Analogue) Positioning.
    Fischer AA; Miller JR; Jodts RJ; Ekanayake DM; Lindeman SV; Brunold TC; Fiedler AT
    Inorg Chem; 2019 Dec; 58(24):16487-16499. PubMed ID: 31789510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New family of ferric spin clusters incorporating redox-active ortho-dioxolene ligands.
    Mulyana Y; Nafady A; Mukherjee A; Bircher R; Moubaraki B; Murray KS; Bond AM; Abrahams BF; Boskovic C
    Inorg Chem; 2009 Aug; 48(16):7765-81. PubMed ID: 19594116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxygenolytic cleavage of 1,2-diols with dioxygen by a mononuclear nonheme iron complex: Mimicking the reaction of myo-inositol oxygenase.
    Sutradhar S; Rahaman R; Bhattacharya S; Paul S; Paine TK
    J Inorg Biochem; 2024 Aug; 257():112611. PubMed ID: 38788359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stereochemical consequences of oxygen atom transfer and electron transfer in imido/oxido molybdenum(IV, V, VI) complexes with two unsymmetric bidentate ligands.
    Hüttinger K; Förster C; Bund T; Hinderberger D; Heinze K
    Inorg Chem; 2012 Apr; 51(7):4180-92. PubMed ID: 22432605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extradiol oxidative cleavage of catechols by ferrous and ferric complexes of 1,4,7-triazacyclononane: insight into the mechanism of the extradiol catechol dioxygenases.
    Lin G; Reid G; Bugg TD
    J Am Chem Soc; 2001 May; 123(21):5030-9. PubMed ID: 11457331
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes.
    Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ
    Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study.
    Bill E; Bothe E; Chaudhuri P; Chlopek K; Herebian D; Kokatam S; Ray K; Weyhermüller T; Neese F; Wieghardt K
    Chemistry; 2004 Dec; 11(1):204-24. PubMed ID: 15549762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad.
    Paria S; Halder P; Paine TK
    Inorg Chem; 2010 May; 49(10):4518-23. PubMed ID: 20392074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand topology effect on the reactivity of a mononuclear nonheme iron(IV)-oxo complex in oxygenation reactions.
    Hong S; Lee YM; Cho KB; Sundaravel K; Cho J; Kim MJ; Shin W; Nam W
    J Am Chem Soc; 2011 Aug; 133(31):11876-9. PubMed ID: 21736350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron Coordination Chemistry of Phenylpyruvate: An Unexpected kappa3-bridging mode that leads to oxidative cleavage of the C2-C3 bond.
    Paine TK; Zheng H; Que L
    Inorg Chem; 2005 Feb; 44(3):474-6. PubMed ID: 15679371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonheme iron-thiolate complexes as structural models of sulfoxide synthase active sites.
    Ekanayake DM; Fischer AA; Elwood ME; Guzek AM; Lindeman SV; Popescu CV; Fiedler AT
    Dalton Trans; 2020 Dec; 49(48):17745-17757. PubMed ID: 33241840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.