These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Jiang Q; Reddy N; Yang Y Acta Biomater; 2010 Oct; 6(10):4042-51. PubMed ID: 20438870 [TBL] [Abstract][Full Text] [Related]
5. A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Surrao DC; Fan JC; Waldman SD; Amsden BG Acta Biomater; 2012 Oct; 8(10):3704-13. PubMed ID: 22705636 [TBL] [Abstract][Full Text] [Related]
6. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. Hayami JW; Surrao DC; Waldman SD; Amsden BG J Biomed Mater Res A; 2010 Mar; 92(4):1407-20. PubMed ID: 19353565 [TBL] [Abstract][Full Text] [Related]
7. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
8. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
9. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575 [TBL] [Abstract][Full Text] [Related]
11. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885 [TBL] [Abstract][Full Text] [Related]
12. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering. Kim YH; Min YK; Lee BT J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348 [TBL] [Abstract][Full Text] [Related]
14. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046 [TBL] [Abstract][Full Text] [Related]
16. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330 [TBL] [Abstract][Full Text] [Related]
17. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility. Zhijiang C; Qin Z; Xianyou S; Yuanpei L Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():797-806. PubMed ID: 27987775 [TBL] [Abstract][Full Text] [Related]
18. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Hochleitner G; Chen F; Blum C; Dalton PD; Amsden B; Groll J Acta Biomater; 2018 May; 72():110-120. PubMed ID: 29555458 [TBL] [Abstract][Full Text] [Related]
19. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]