These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 24697757)

  • 1. Conformational preferences of modified uridines: comparison of AMBER derived force fields.
    Deb I; Sarzynska J; Nilsson L; Lahiri A
    J Chem Inf Model; 2014 Apr; 54(4):1129-42. PubMed ID: 24697757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations.
    Deb I; Sarzynska J; Nilsson L; Lahiri A
    Biopolymers; 2014 Oct; 101(10):985-91. PubMed ID: 24729441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-informed reparameterization of modified RNA and the effect of explicit water models: application to pseudouridine and derivatives.
    Dutta N; Deb I; Sarzynska J; Lahiri A
    J Comput Aided Mol Des; 2022 Mar; 36(3):205-224. PubMed ID: 35338419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reparameterizations of the χ Torsion and Lennard-Jones σ Parameters Improve the Conformational Characteristics of Modified Uridines.
    Deb I; Pal R; Sarzynska J; Lahiri A
    J Comput Chem; 2016 Jun; 37(17):1576-88. PubMed ID: 27030560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation of the Conformational Preferences of Pseudouridine Derivatives: Improving the Distribution in the Glycosidic Torsion Space.
    Dutta N; Sarzynska J; Lahiri A
    J Chem Inf Model; 2020 Oct; 60(10):4995-5002. PubMed ID: 33030900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the accuracy of force fields for predicting the physical properties of dimethylnitramine.
    Zheng L; Thompson DL
    J Phys Chem B; 2006 Aug; 110(32):16082-8. PubMed ID: 16898765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.
    Voelz VA; Dill KA; Chorny I
    Biopolymers; 2011; 96(5):639-50. PubMed ID: 21184487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMBER Force Field Parameters for the Naturally Occurring Modified Nucleosides in RNA.
    Aduri R; Psciuk BT; Saro P; Taniga H; Schlegel HB; SantaLucia J
    J Chem Theory Comput; 2007 Jul; 3(4):1464-75. PubMed ID: 26633217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field.
    Agrawal PM; Rice BM; Zheng L; Thompson DL
    J Phys Chem B; 2006 Dec; 110(51):26185-8. PubMed ID: 17181274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate description of nitrogenous base flexibility in classical molecular dynamics simulations of nucleotides bound to proteins.
    Fornili A; Sironi M; Degano M
    J Phys Chem B; 2007 Jun; 111(23):6297-302. PubMed ID: 17508739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA stability under different combinations of amber force fields and solvation models.
    Gong Z; Xiao Y; Xiao Y
    J Biomol Struct Dyn; 2010 Dec; 28(3):431-41. PubMed ID: 20919758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment.
    Henriques J; Cragnell C; Skepö M
    J Chem Theory Comput; 2015 Jul; 11(7):3420-31. PubMed ID: 26575776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins.
    Okur A; Strockbine B; Hornak V; Simmerling C
    J Comput Chem; 2003 Jan; 24(1):21-31. PubMed ID: 12483672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems.
    Grubišić S; Brancato G; Barone V
    Phys Chem Chem Phys; 2013 Oct; 15(40):17395-407. PubMed ID: 24022462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results.
    Langley DR
    J Biomol Struct Dyn; 1998 Dec; 16(3):487-509. PubMed ID: 10052609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR-based conformational analysis of 2',6-disubstituted uridines and antiviral evaluation of new phosphoramidate prodrugs.
    da Paixão Soares F; Groaz E; Lescrinier E; Neyts J; Leyssen P; Herdewijn P
    Bioorg Med Chem; 2015 Sep; 23(17):5809-15. PubMed ID: 26210159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids.
    Svozil D; Sponer JE; Marchan I; Pérez A; Cheatham TE; Forti F; Luque FJ; Orozco M; Sponer J
    J Phys Chem B; 2008 Jul; 112(27):8188-97. PubMed ID: 18558755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of short interfering RNA containing the modified nucleosides 2-thiouridine, pseudouridine, or dihydrouridine.
    Nawrot B; Sochacka E
    Curr Protoc Nucleic Acid Chem; 2009 Jun; Chapter 16():16.2.1-16.2.16. PubMed ID: 19488969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.
    Verbaro D; Ghosh I; Nau WM; Schweitzer-Stenner R
    J Phys Chem B; 2010 Dec; 114(51):17201-8. PubMed ID: 21138254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.