These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24697782)

  • 1. Temperature dependence of the ballistic energy transport in perfluoroalkanes.
    Rubtsova NI; Kurnosov AA; Burin AL; Rubtsov IV
    J Phys Chem B; 2014 Jul; 118(28):8381-7. PubMed ID: 24697782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistic energy transport along PEG chains: distance dependence of the transport efficiency.
    Lin Z; Zhang N; Jayawickramarajah J; Rubtsov IV
    Phys Chem Chem Phys; 2012 Aug; 14(30):10445-54. PubMed ID: 22555778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic Energy Transport in Oligomers.
    Rubtsova NI; Qasim LN; Kurnosov AA; Burin AL; Rubtsov IV
    Acc Chem Res; 2015 Sep; 48(9):2547-55. PubMed ID: 26305731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-selective ballistic energy transport in alkane oligomers: toward controlling the transport speed.
    Yue Y; Qasim LN; Kurnosov AA; Rubtsova NI; Mackin RT; Zhang H; Zhang B; Zhou X; Jayawickramarajah J; Burin AL; Rubtsov IV
    J Phys Chem B; 2015 May; 119(21):6448-56. PubMed ID: 25936983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Temperature Vibrational Energy Transport via PEG Chains.
    Mackin RT; Leong TX; Rubtsova NI; Burin AL; Rubtsov IV
    J Phys Chem Lett; 2020 Jun; 11(12):4578-4583. PubMed ID: 32437615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition of Several Energy-Transport Initiation Mechanisms Defines the Ballistic Transport Speed.
    Nawagamuwage SU; Qasim LN; Zhou X; Leong TX; Parshin IV; Jayawickramarajah J; Burin AL; Rubtsov IV
    J Phys Chem B; 2021 Jul; 125(27):7546-7555. PubMed ID: 34185993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature ballistic energy transport in molecules with repeating units.
    Rubtsova NI; Nyby CM; Zhang H; Zhang B; Zhou X; Jayawickramarajah J; Burin AL; Rubtsov IV
    J Chem Phys; 2015 Jun; 142(21):212412. PubMed ID: 26049432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy.
    Rubtsova NI; Rubtsov IV
    Annu Rev Phys Chem; 2015 Apr; 66():717-38. PubMed ID: 25747112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: fast transport and relaxation of vibrational energy in polymer chains.
    Kurnosov AA; Rubtsov IV; Burin AL
    J Chem Phys; 2015 Jan; 142(1):011101. PubMed ID: 25573545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure dependent energy transport: relaxation-assisted 2DIR measurements and theoretical studies.
    Kasyanenko VM; Tesar SL; Rubtsov GI; Burin AL; Rubtsov IV
    J Phys Chem B; 2011 Sep; 115(38):11063-73. PubMed ID: 21859144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural flexibility of a helical peptide regulates vibrational energy transport properties.
    Backus EH; Nguyen PH; Botan V; Moretto A; Crisma M; Toniolo C; Zerbe O; Stock G; Hamm P
    J Phys Chem B; 2008 Dec; 112(48):15487-92. PubMed ID: 18991434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric relaxation properties of carboxylic acid-terminated n-alkyl monolayers tethered to Si(1 1 1): dynamics of dipoles and gauche defects.
    Godet C
    J Phys Condens Matter; 2016 Mar; 28(9):094012. PubMed ID: 26872003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.
    Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K
    Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions.
    Bock C; Weingart S; Karaissaridis E; Kunze U; Speck F; Seyller T
    Nanotechnology; 2012 Oct; 23(39):395203. PubMed ID: 22971877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle model for nonlocal heat transport in fusion plasmas.
    Bufferand H; Ciraolo G; Ghendrih P; Lepri S; Livi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023102. PubMed ID: 23496626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational energy transport in peptide helices after excitation of C-D modes in Leu-d10.
    Schade M; Moretto A; Crisma M; Toniolo C; Hamm P
    J Phys Chem B; 2009 Oct; 113(40):13393-7. PubMed ID: 19754053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-catalyzed arylation of 1H-perfluoroalkanes.
    Popov I; Lindeman S; Daugulis O
    J Am Chem Soc; 2011 Jun; 133(24):9286-9. PubMed ID: 21627068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing ballistic thermal conduction in segmented silicon nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    Nanoscale; 2019 Jul; 11(28):13407-13414. PubMed ID: 31276141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transport via coordination bonds.
    Kasyanenko VM; Lin Z; Rubtsov GI; Donahue JP; Rubtsov IV
    J Chem Phys; 2009 Oct; 131(15):154508. PubMed ID: 20568873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.