BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 24697835)

  • 1. Influence of postharvest processing and storage conditions on key antioxidants in pūhā (Sonchus oleraceus L.).
    Ou ZQ; Schmierer DM; Strachan CJ; Rades T; McDowell A
    J Pharm Pharmacol; 2014 Jul; 66(7):998-1008. PubMed ID: 24697835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts.
    Ou ZQ; Schmierer DM; Rades T; Larsen L; McDowell A
    J Pharm Pharmacol; 2013 Feb; 65(2):271-9. PubMed ID: 23278695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.
    McDowell A; Thompson S; Stark M; Ou ZQ; Gould KS
    Phytother Res; 2011 Dec; 25(12):1876-82. PubMed ID: 21928279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of boiling and in vitro gastrointestinal digestion on the antioxidant activity of Sonchus oleraceus leaves.
    Mawalagedera SM; Ou ZQ; McDowell A; Gould KS
    Food Funct; 2016 Mar; 7(3):1515-22. PubMed ID: 26891707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H₂O₂-induced cell senescence.
    Ou ZQ; Rades T; McDowell A
    Molecules; 2015 Mar; 20(3):4548-64. PubMed ID: 25774489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves.
    Ferreira JF; Luthria DL
    J Agric Food Chem; 2010 Feb; 58(3):1691-8. PubMed ID: 20050663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L.
    Kumar SS; Manoj P; Shetty NP; Giridhar P
    J Sci Food Agric; 2015 Jul; 95(9):1812-20. PubMed ID: 25139828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel.
    Mphahlele RR; Fawole OA; Makunga NP; Opara UL
    BMC Complement Altern Med; 2016 May; 16():143. PubMed ID: 27229852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of drying temperature on alkylamide and cichoric acid concentrations of Echinacea purpurea.
    Stuart DL; Wills RB
    J Agric Food Chem; 2003 Mar; 51(6):1608-10. PubMed ID: 12617592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quality evaluation of different preparations of dry extracts of birch (Betula pendula Roth) leaves.
    Raudonė L; Raudonis R; Janulis V; Viškelis P
    Nat Prod Res; 2014; 28(19):1645-8. PubMed ID: 24934103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the antioxidant behavior of air- and freeze-dried aromatic plant materials in relation to their phenolic content and vegetative cycle.
    Papageorgiou V; Mallouchos A; Komaitis M
    J Agric Food Chem; 2008 Jul; 56(14):5743-52. PubMed ID: 18578534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study.
    Mulinacci N; Innocenti M; Bellumori M; Giaccherini C; Martini V; Michelozzi M
    Talanta; 2011 Jul; 85(1):167-76. PubMed ID: 21645686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China.
    Xia DZ; Yu XF; Zhu ZY; Zou ZD
    Nat Prod Res; 2011 Dec; 25(20):1893-901. PubMed ID: 21793765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?
    Tegelberg R; Virjamo V; Julkunen-Tiitto R
    Phytochem Anal; 2018 Sep; 29(5):493-499. PubMed ID: 29520880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.
    Slatnar A; Klancar U; Stampar F; Veberic R
    J Agric Food Chem; 2011 Nov; 59(21):11696-702. PubMed ID: 21958361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approach to preserve phenolics in Thunbergia laurifolia leaves by different drying treatments.
    Oh HKF; Siow LF; Lim YY
    J Food Biochem; 2019 Jul; 43(7):e12856. PubMed ID: 31353691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells.
    Chen L; Teng H; Cao H
    Food Chem Toxicol; 2019 May; 127():182-187. PubMed ID: 30914352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drying Methods Alter Angiotensin-I Converting Enzyme Inhibitory Activity, Antioxidant Properties, and Phenolic Constituents of African Mistletoe (Loranthus bengwensis L) Leaves.
    Oboh G; Omojokun OS; Ademiluyi AO
    J Evid Based Complementary Altern Med; 2016 Oct; 21(4):260-70. PubMed ID: 26289432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract.
    Tolun A; Artik N; Altintas Z
    Food Chem; 2020 Jan; 302():125347. PubMed ID: 31430631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.
    Lemus-Mondaca R; Ah-Hen K; Vega-Gálvez A; Honores C; Moraga NO
    Plant Foods Hum Nutr; 2016 Mar; 71(1):49-56. PubMed ID: 26650384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.