These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 24698273)

  • 1. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.
    Zhang J; Lanuza GM; Britz O; Wang Z; Siembab VC; Zhang Y; Velasquez T; Alvarez FJ; Frank E; Goulding M
    Neuron; 2014 Apr; 82(1):138-50. PubMed ID: 24698273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements.
    Britz O; Zhang J; Grossmann KS; Dyck J; Kim JC; Dymecki S; Gosgnach S; Goulding M
    Elife; 2015 Oct; 4():. PubMed ID: 26465208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.
    Wilson JM; Blagovechtchenski E; Brownstone RM
    J Neurosci; 2010 Jan; 30(3):1137-48. PubMed ID: 20089922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait.
    Koch SC; Del Barrio MG; Dalet A; Gatto G; Günther T; Zhang J; Seidler B; Saur D; Schüle R; Goulding M
    Neuron; 2017 Dec; 96(6):1419-1431.e5. PubMed ID: 29224725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord.
    Talpalar AE; Endo T; Löw P; Borgius L; Hägglund M; Dougherty KJ; Ryge J; Hnasko TS; Kiehn O
    Neuron; 2011 Sep; 71(6):1071-84. PubMed ID: 21943604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control.
    Callahan RA; Roberts R; Sengupta M; Kimura Y; Higashijima SI; Bagnall MW
    Elife; 2019 Jul; 8():. PubMed ID: 31355747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal interneurons that are selectively activated during fictive flexion reflex.
    Berkowitz A
    J Neurosci; 2007 Apr; 27(17):4634-41. PubMed ID: 17460076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons.
    Bannatyne BA; Hao ZZ; Dyer GMC; Watanabe M; Maxwell DJ; Berkowitz A
    J Neurosci; 2020 Mar; 40(13):2680-2694. PubMed ID: 32066584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
    Elson MS; Berkowitz A
    J Neurosci; 2016 Mar; 36(9):2819-26. PubMed ID: 26937018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching.
    Stein PS; Daniels-McQueen S
    J Neurosci; 2002 Aug; 22(15):6800-9. PubMed ID: 12151560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal inhibitory interneurons: regulators of coordination during locomotor activity.
    Gosgnach S
    Front Neural Circuits; 2023; 17():1167836. PubMed ID: 37151357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons.
    Satoh D; Pudenz C; Arber S
    Neuron; 2016 Mar; 89(5):1046-58. PubMed ID: 26924434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways.
    Takakusaki K; Kohyama J; Matsuyama K; Mori S
    Neuroscience; 2001; 103(2):511-27. PubMed ID: 11246165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Activation of V1 Interneurons Reveals the Multimodality of Spinal Locomotor Networks in the Neonatal Mouse.
    Falgairolle M; O'Donovan MJ
    J Neurosci; 2021 Oct; 41(41):8545-8561. PubMed ID: 34446573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.