BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24698293)

  • 1. Enhanced rhamnolipid production by Pseudomonas aeruginosa USM-AR2 via fed-batch cultivation based on maximum substrate uptake rate.
    Noh NA; Salleh SM; Yahya AR
    Lett Appl Microbiol; 2014 Jun; 58(6):617-23. PubMed ID: 24698293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of agitation on oil substrate dispersion and oxygen transfer in Pseudomonas aeruginosa USM-AR2 fermentation producing rhamnolipid in a stirred tank bioreactor.
    Nur Asshifa MN; Zambry NS; Salwa MS; Yahya ARM
    3 Biotech; 2017 Jul; 7(3):189. PubMed ID: 28664380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process.
    Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W
    Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.
    Asshifa Md Noh N; Al-Ashraf Abdullah A; Nasir Mohamad Ibrahim M; Ramli Mohd Yahya A
    J Gen Appl Microbiol; 2012; 58(2):153-61. PubMed ID: 22688247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentative production of rhamnolipid and purification by adsorption chromatography.
    Jadhav J; Dutta S; Kale S; Pratap A
    Prep Biochem Biotechnol; 2018 Mar; 48(3):234-241. PubMed ID: 29313452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended Biosynthesis of Rhamnolipid by Immobilized Pseudomonas aeruginosa USM-AR2 Cells in a Fluidized Bed Bioreactor.
    Mohammed Zulkhifli NA; Solong DR; Mohd Yahya AR; Md Noh NA
    Lett Appl Microbiol; 2023 May; ():. PubMed ID: 37164939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils.
    Raza ZA; Khan MS; Khalid ZM; Rehman A
    Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor.
    Sharma S; Verma R; Dhull S; Maiti SK; Pandey LM
    Bioprocess Biosyst Eng; 2022 Feb; 45(2):309-319. PubMed ID: 34767073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874.
    Müller MM; Hörmann B; Kugel M; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):585-92. PubMed ID: 20890599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.
    Kahraman H; Erenler SO
    Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials.
    Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM
    Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods.
    de Santana-Filho AP; Camilios-Neto D; de Souza LM; Sassaki GL; Mitchell DA; Krieger N
    Appl Biochem Biotechnol; 2015 Jan; 175(2):988-95. PubMed ID: 25351631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhamnolipid production by Pseudomonas aeruginosa immobilised in polyvinyl alcohol beads.
    Jeong HS; Lim DJ; Hwang SH; Ha SD; Kong JY
    Biotechnol Lett; 2004 Jan; 26(1):35-9. PubMed ID: 15005149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.