These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 24698722)

  • 1. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores.
    Hu E; Cheng H
    Water Res; 2014 Jun; 57():8-19. PubMed ID: 24698722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-induced degradation of atrazine sorbed in mineral micropores.
    Hu E; Cheng H; Hu Y
    Environ Sci Technol; 2012 May; 46(9):5067-76. PubMed ID: 22489838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices.
    Hu E; Hu Y; Cheng H
    J Hazard Mater; 2015 Dec; 299():444-52. PubMed ID: 26241770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores.
    Hu E; Cheng H
    Environ Sci Technol; 2013 Jan; 47(1):533-41. PubMed ID: 23215162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.
    Yang H; Hu Y; Cheng H
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19266-80. PubMed ID: 27364487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation.
    He Y; Cheng H
    Water Res; 2016 May; 94():305-314. PubMed ID: 26971806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions.
    Zhanqi G; Shaogui Y; Na T; Cheng S
    J Hazard Mater; 2007 Jul; 145(3):424-30. PubMed ID: 17188429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals.
    Guan YH; Ma J; Ren YM; Liu YL; Xiao JY; Lin LQ; Zhang C
    Water Res; 2013 Sep; 47(14):5431-8. PubMed ID: 23916710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel process for the removal of aniline from wastewaters.
    O'Brien J; O'Dwyer TF; Curtin T
    J Hazard Mater; 2008 Nov; 159(2-3):476-82. PubMed ID: 18395337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples.
    Doula MK; Dimirkou A
    J Hazard Mater; 2008 Mar; 151(2-3):738-45. PubMed ID: 17658683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst.
    Bo LL; Zhang YB; Quan X; Zhao B
    J Hazard Mater; 2008 May; 153(3):1201-6. PubMed ID: 18006223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.
    Ju Y; Liu X; Liu R; Li G; Wang X; Yang Y; Wei D; Fang J; Dionysiou DD
    J Hazard Mater; 2015 Apr; 287():325-34. PubMed ID: 25668301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ treatment of herbicide-contaminated groundwater-Feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials.
    Gawel A; Seiwert B; Sühnholz S; Schmitt-Jansen M; Mackenzie K
    J Hazard Mater; 2020 Jul; 393():122470. PubMed ID: 32208331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation.
    Gonzalez-Olmos R; Kopinke FD; Mackenzie K; Georgi A
    Environ Sci Technol; 2013 Mar; 47(5):2353-60. PubMed ID: 23346998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer.
    Joo SH; Zhao D
    Chemosphere; 2008 Jan; 70(3):418-25. PubMed ID: 17686506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of Fe(III) and Cu(II) complexes in NaY zeolite.
    Drechsel SM; Kaminski RC; Nakagaki S; Wypych F
    J Colloid Interface Sci; 2004 Sep; 277(1):138-45. PubMed ID: 15276050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-metal ions in zeolites: coordination and activation of oxygen.
    Smeets PJ; Woertink JS; Sels BF; Solomon EI; Schoonheydt RA
    Inorg Chem; 2010 Apr; 49(8):3573-83. PubMed ID: 20380459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: Mechanism and application to norfloxacin degradation.
    Li H; Chen J; Hou H; Pan H; Ma X; Yang J; Wang L; Crittenden JC
    Water Res; 2017 Dec; 126():274-284. PubMed ID: 28963935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes.
    Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI
    Chem Rev; 2018 Mar; 118(5):2718-2768. PubMed ID: 29256242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Dec; 40(24):7694-701. PubMed ID: 17256515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.