BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 24699016)

  • 1. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.
    Maldjian JA; Davenport EM; Whitlow CT
    Neuroimage; 2014 Aug; 96():88-94. PubMed ID: 24699016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How reliable are MEG resting-state connectivity metrics?
    Colclough GL; Woolrich MW; Tewarie PK; Brookes MJ; Quinn AJ; Smith SM
    Neuroimage; 2016 Sep; 138():284-293. PubMed ID: 27262239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution.
    Hillebrand A; Barnes GR; Bosboom JL; Berendse HW; Stam CJ
    Neuroimage; 2012 Feb; 59(4):3909-21. PubMed ID: 22122866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in MEG.
    Ghuman AS; McDaniel JR; Martin A
    Neuroimage; 2011 May; 56(1):69-77. PubMed ID: 21256967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do the posterior midline cortices belong to the electrophysiological default-mode network?
    Sjøgård M; De Tiège X; Mary A; Peigneux P; Goldman S; Nagels G; van Schependom J; Quinn AJ; Woolrich MW; Wens V
    Neuroimage; 2019 Oct; 200():221-230. PubMed ID: 31238165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics.
    Marquetand J; Vannoni S; Carboni M; Li Hegner Y; Stier C; Braun C; Focke NK
    Brain Connect; 2019 Sep; 9(7):539-553. PubMed ID: 31115272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of graph measures derived from resting-state MEG functional connectivity metrics in sensor and source spaces.
    Pourmotabbed H; de Jongh Curry AL; Clarke DF; Tyler-Kabara EC; Babajani-Feremi A
    Hum Brain Mapp; 2022 Mar; 43(4):1342-1357. PubMed ID: 35019189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity.
    Messaritaki E; Koelewijn L; Dima DC; Williams GM; Perry G; Singh KD
    Neuroimage; 2017 Oct; 159():302-324. PubMed ID: 28735011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electrophysiological connectome is maintained in healthy elders: a power envelope correlation MEG study.
    Coquelet N; Mary A; Peigneux P; Goldman S; Wens V; De Tiège X
    Sci Rep; 2017 Oct; 7(1):13984. PubMed ID: 29070789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A symmetric multivariate leakage correction for MEG connectomes.
    Colclough GL; Brookes MJ; Smith SM; Woolrich MW
    Neuroimage; 2015 Aug; 117():439-48. PubMed ID: 25862259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
    Sareen E; Zahar S; Ville DV; Gupta A; Griffa A; Amico E
    Neuroimage; 2021 Oct; 240():118331. PubMed ID: 34237444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.
    Di X; Biswal BB
    Neuroimage; 2014 Feb; 86():53-9. PubMed ID: 23927904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy.
    Widjaja E; Zamyadi M; Raybaud C; Snead OC; Smith ML
    AJNR Am J Neuroradiol; 2013 Dec; 34(12):2386-92. PubMed ID: 23868148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Asymmetric Interactions in Resting State Brain Networks.
    Joshi AA; Salloum R; Bhushan C; Leahy RM
    Inf Process Med Imaging; 2015; 24():399-410. PubMed ID: 26221690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy.
    Youssofzadeh V; Agler W; Tenney JR; Kadis DS
    Epilepsy Res; 2018 Sep; 145():102-109. PubMed ID: 29936300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What graph theory actually tells us about resting state interictal MEG epileptic activity.
    Niso G; Carrasco S; Gudín M; Maestú F; Del-Pozo F; Pereda E
    Neuroimage Clin; 2015; 8():503-15. PubMed ID: 26106575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.