These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 24699093)
1. Effects of gadolinium contrast agent administration on automatic brain tissue classification of patients with multiple sclerosis. Warntjes JB; Tisell A; Landtblom AM; Lundberg P AJNR Am J Neuroradiol; 2014 Jul; 35(7):1330-6. PubMed ID: 24699093 [TBL] [Abstract][Full Text] [Related]
2. Effect of Gadolinium on the Estimation of Myelin and Brain Tissue Volumes Based on Quantitative Synthetic MRI. Maekawa T; Hagiwara A; Hori M; Andica C; Haruyama T; Kuramochi M; Nakazawa M; Koshino S; Irie R; Kamagata K; Wada A; Abe O; Aoki S AJNR Am J Neuroradiol; 2019 Feb; 40(2):231-237. PubMed ID: 30591507 [TBL] [Abstract][Full Text] [Related]
3. Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI. Saccenti L; Andica C; Hagiwara A; Yokoyama K; Takemura MY; Fujita S; Maekawa T; Kamagata K; Le Berre A; Hori M; Hattori N; Aoki S Neuroradiology; 2019 Nov; 61(11):1219-1227. PubMed ID: 31209528 [TBL] [Abstract][Full Text] [Related]
4. Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. Popescu V; Ran NC; Barkhof F; Chard DT; Wheeler-Kingshott CA; Vrenken H Neuroimage Clin; 2014; 4():366-73. PubMed ID: 24567908 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the effects of white matter multiple sclerosis lesions on the volume estimation of 6 brain tissue segmentation methods. Valverde S; Oliver A; Díez Y; Cabezas M; Vilanova JC; Ramió-Torrentà L; Rovira À; Lladó X AJNR Am J Neuroradiol; 2015 Jun; 36(6):1109-15. PubMed ID: 25678478 [TBL] [Abstract][Full Text] [Related]
6. The effect of gadolinium-based contrast-agents on automated brain atrophy measurements by FreeSurfer in patients with multiple sclerosis. Lie IA; Kerklingh E; Wesnes K; van Nederpelt DR; Brouwer I; Torkildsen Ø; Myhr KM; Barkhof F; Bø L; Vrenken H Eur Radiol; 2022 May; 32(5):3576-3587. PubMed ID: 34978580 [TBL] [Abstract][Full Text] [Related]
7. Characterization of gray-matter multiple sclerosis lesions using double inversion recovery, diffusion, contrast-enhanced, and volumetric MRI. Parra Corral MA; Govindarajan ST; Stefancin P; Bangiyev L; Coyle PK; Duong TQ Mult Scler Relat Disord; 2019 Jun; 31():74-81. PubMed ID: 30951968 [TBL] [Abstract][Full Text] [Related]
8. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. Valverde S; Oliver A; Roura E; Pareto D; Vilanova JC; Ramió-Torrentà L; Sastre-Garriga J; Montalban X; Rovira À; Lladó X Neuroimage Clin; 2015; 9():640-7. PubMed ID: 26740917 [TBL] [Abstract][Full Text] [Related]
9. Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. Cobzas D; Sun H; Walsh AJ; Lebel RM; Blevins G; Wilman AH J Magn Reson Imaging; 2015 Dec; 42(6):1601-10. PubMed ID: 25980643 [TBL] [Abstract][Full Text] [Related]
10. White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: a longitudinal study. Magon S; Gaetano L; Chakravarty MM; Lerch JP; Naegelin Y; Stippich C; Kappos L; Radue EW; Sprenger T BMC Neurosci; 2014 Sep; 15():106. PubMed ID: 25200127 [TBL] [Abstract][Full Text] [Related]
12. Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis. Jurcoane A; Wagner M; Schmidt C; Mayer C; Gracien RM; Hirschmann M; Deichmann R; Volz S; Ziemann U; Hattingen E J Magn Reson Imaging; 2013 Dec; 38(6):1454-61. PubMed ID: 23554005 [TBL] [Abstract][Full Text] [Related]
13. Corpus callosum atrophy correlates with gray matter atrophy in patients with multiple sclerosis. Klawiter EC; Ceccarelli A; Arora A; Jackson J; Bakshi S; Kim G; Miller J; Tauhid S; von Gizycki C; Bakshi R; Neema M J Neuroimaging; 2015; 25(1):62-7. PubMed ID: 24816394 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Nakamura K; Fisher E Neuroimage; 2009 Feb; 44(3):769-76. PubMed ID: 19007895 [TBL] [Abstract][Full Text] [Related]
15. The role of global and regional gray matter volume decrease in multiple sclerosis. Grothe M; Lotze M; Langner S; Dressel A J Neurol; 2016 Jun; 263(6):1137-45. PubMed ID: 27094570 [TBL] [Abstract][Full Text] [Related]
16. Unraveling the relationship between regional gray matter atrophy and pathology in connected white matter tracts in long-standing multiple sclerosis. Steenwijk MD; Daams M; Pouwels PJ; J Balk L; Tewarie PK; Geurts JJ; Barkhof F; Vrenken H Hum Brain Mapp; 2015 May; 36(5):1796-807. PubMed ID: 25627545 [TBL] [Abstract][Full Text] [Related]
18. Gray Matter Nucleus Hyperintensity After Monthly Triple-Dose Gadopentetate Dimeglumine With Long-term Magnetic Resonance Imaging. DeBevits JJ; Munbodh R; Bageac D; Wu R; DiCamillo PA; Hu C; Wang L; Naismith RT; Karimeddini D; Dhib-Jalbut S; Redko S; Cook SD; Cadavid D; Wolansky L Invest Radiol; 2020 Oct; 55(10):629-635. PubMed ID: 32898355 [TBL] [Abstract][Full Text] [Related]
19. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. Taso M; Le Troter A; Sdika M; Cohen-Adad J; Arnoux PJ; Guye M; Ranjeva JP; Callot V Neuroimage; 2015 Aug; 117():20-8. PubMed ID: 26003856 [TBL] [Abstract][Full Text] [Related]
20. Blood-brain barrier breakdown in non-enhancing multiple sclerosis lesions detected by 7-Tesla MP2RAGE ΔT1 mapping. Choi S; Spini M; Hua J; Harrison DM PLoS One; 2021; 16(4):e0249973. PubMed ID: 33901207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]