BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24699139)

  • 1. Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation.
    Totaro A; Astro V; Tonoli D; de Curtis I
    PLoS One; 2014; 9(4):e93199. PubMed ID: 24699139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an intramolecular interaction important for the regulation of GIT1 functions.
    Totaro A; Paris S; Asperti C; de Curtis I
    Mol Biol Cell; 2007 Dec; 18(12):5124-38. PubMed ID: 17898078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin.
    Schmalzigaug R; Garron ML; Roseman JT; Xing Y; Davidson CE; Arold ST; Premont RT
    Cell Signal; 2007 Aug; 19(8):1733-44. PubMed ID: 17467235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific dephosphorylation at tyr-554 of git1 by ptprz promotes its association with paxillin and hic-5.
    Fujikawa A; Matsumoto M; Kuboyama K; Suzuki R; Noda M
    PLoS One; 2015; 10(3):e0119361. PubMed ID: 25742295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover.
    Hammer A; Oladimeji P; De Las Casas LE; Diakonova M
    FASEB J; 2015 Mar; 29(3):943-59. PubMed ID: 25466889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and functional characterization of the interaction between liprin-α1 and GIT1: implications for the regulation of cell motility.
    Asperti C; Astro V; Pettinato E; Paris S; Bachi A; de Curtis I
    PLoS One; 2011; 6(6):e20757. PubMed ID: 21695141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of serine 709 in GIT1 regulates protrusive activity in cells.
    Webb DJ; Kovalenko M; Whitmore L; Horwitz AF
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1284-8. PubMed ID: 16797488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of the target-binding mode of the G protein-coupled receptor kinase-interacting protein in the regulation of focal adhesion dynamics.
    Liang M; Xie X; Pan J; Jin G; Yu C; Wei Z
    J Biol Chem; 2019 Apr; 294(15):5827-5839. PubMed ID: 30737283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness.
    Brown MC; Cary LA; Jamieson JS; Cooper JA; Turner CE
    Mol Biol Cell; 2005 Sep; 16(9):4316-28. PubMed ID: 16000375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GIT1 phosphorylation on serine 46 by PKD3 regulates paxillin trafficking and cellular protrusive activity.
    Huck B; Kemkemer R; Franz-Wachtel M; Macek B; Hausser A; Olayioye MA
    J Biol Chem; 2012 Oct; 287(41):34604-13. PubMed ID: 22893698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanism of G protein coupled receptor kinase interacting protein 1 RNA hairpin inhibiting osteoblasts migration].
    Zhang N; Hu Z; Yin G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):1-5. PubMed ID: 17304992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GIT1 paxillin-binding domain is a four-helix bundle, and it binds to both paxillin LD2 and LD4 motifs.
    Zhang ZM; Simmerman JA; Guibao CD; Zheng JJ
    J Biol Chem; 2008 Jul; 283(27):18685-93. PubMed ID: 18448431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rac3 inhibits adhesion and differentiation of neuronal cells by modifying GIT1 downstream signaling.
    Hajdo-Milasinovic A; van der Kammen RA; Moneva Z; Collard JG
    J Cell Sci; 2009 Jun; 122(Pt 12):2127-36. PubMed ID: 19494130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hic-5 interacts with GIT1 with a different binding mode from paxillin.
    Nishiya N; Shirai T; Suzuki W; Nose K
    J Biochem; 2002 Aug; 132(2):279-89. PubMed ID: 12153727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics.
    Nayal A; Webb DJ; Brown CM; Schaefer EM; Vicente-Manzanares M; Horwitz AR
    J Cell Biol; 2006 May; 173(4):587-9. PubMed ID: 16717130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly.
    Zhao ZS; Manser E; Loo TH; Lim L
    Mol Cell Biol; 2000 Sep; 20(17):6354-63. PubMed ID: 10938112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of GIT1 tyrosine 321 is required for association with FAK at focal adhesions and for PDGF-activated migration of osteoblasts.
    Ren Y; Yu L; Fan J; Rui Z; Hua Z; Zhang Z; Zhang N; Yin G
    Mol Cell Biochem; 2012 Jun; 365(1-2):109-18. PubMed ID: 22302306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.
    Černohorská M; Sulimenko V; Hájková Z; Sulimenko T; Sládková V; Vinopal S; Dráberová E; Dráber P
    Biochim Biophys Acta; 2016 Jun; 1863(6 Pt A):1282-97. PubMed ID: 27012601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of adaptor protein GIT1 in platelets, leading to the interaction between GIT1 and integrin alpha(IIb)beta3.
    Sato H; Suzuki-Inoue K; Inoue O; Ozaki Y
    Biochem Biophys Res Commun; 2008 Mar; 368(1):157-61. PubMed ID: 18211801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. betaPIX controls cell motility and neurite extension by regulating the distribution of GIT1.
    Za L; Albertinazzi C; Paris S; Gagliani M; Tacchetti C; de Curtis I
    J Cell Sci; 2006 Jul; 119(Pt 13):2654-66. PubMed ID: 16787945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.