These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24699192)

  • 1. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis.
    Xue XY; Zhao B; Chao LM; Chen DY; Cui WR; Mao YB; Wang LJ; Chen XY
    PLoS Genet; 2014 Apr; 10(4):e1004266. PubMed ID: 24699192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRANSPARENT TESTA GLABRA2 defines trichome cell shape by modulating actin cytoskeleton in Arabidopsis thaliana.
    Liu L; Wang Y; Cao W; Yang L; Zhang C; Yuan L; Wang D; Wang W; Zhang H; Schiefelbein J; Yu F; An L
    Plant Physiol; 2024 May; 195(2):1256-1276. PubMed ID: 38391271
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Fouracre JP; Chen VJ; Poethig RS
    Development; 2020 Apr; 147(8):. PubMed ID: 32198155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression and global analysis of miR156/SQUAMOSA promoter binding-like proteins (SPL) module in oat.
    Mehtab-Singh ; Tripathi RK; Bekele WA; Tinker NA; Singh J
    Sci Rep; 2024 Apr; 14(1):9928. PubMed ID: 38688976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AXR1 modulates trichome morphogenesis through mediating ROP2 stability in Arabidopsis.
    Liu L; Niu L; Ji K; Wang Y; Zhang C; Pan M; Wang W; Schiefelbein J; Yu F; An L
    Plant J; 2023 Nov; 116(3):756-772. PubMed ID: 37516999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative morphoanatomy and transcriptomic analyses reveal key factors controlling floral trichome development in Aristolochia (Aristolochiaceae).
    Suárez-Baron H; Alzate JF; Ambrose BA; Pelaz S; González F; Pabón-Mora N
    J Exp Bot; 2023 Nov; 74(21):6588-6607. PubMed ID: 37656729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MYB transcription factors drive evolutionary innovations in Arabidopsis fruit trichome patterning.
    Arteaga N; Savic M; Méndez-Vigo B; Fuster-Pons A; Torres-Pérez R; Oliveros JC; Picó FX; Alonso-Blanco C
    Plant Cell; 2021 May; 33(3):548-565. PubMed ID: 33955486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression underlying floral epidermal specialization in Aristolochia fimbriata (Aristolochiaceae).
    Suárez-Baron H; Alzate JF; González F; Pelaz S; Ambrose BA; Pabón-Mora N
    Ann Bot; 2021 May; 127(6):749-764. PubMed ID: 33630993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High CO2 adaptation mechanisms revealed in the miR156-regulated flowering time pathway.
    Zhang K; Wang E; Liu QA; Wang J
    PLoS Comput Biol; 2023 Dec; 19(12):e1011738. PubMed ID: 38117849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adaptor protein ECAP, the corepressor LEUNIG, and the transcription factor BEH3 interact and regulate microsporocyte generation in Arabidopsis.
    Shi L; Li C; Lv G; Li X; Feng W; Bi Y; Wang W; Wang Y; Zhu L; Tang W; Fu Y
    Plant Cell; 2024 Jul; 36(7):2531-2549. PubMed ID: 38526222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in RABE1C suppress the spirrig mutant phenotype.
    Jakoby M; Stephan L; Heinemann B; Hülskamp M
    PLoS One; 2024; 19(6):e0304001. PubMed ID: 38885274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression.
    Shalom L; Shlizerman L; Zur N; Doron-Faigenboim A; Blumwald E; Sadka A
    Front Plant Sci; 2015; 6():389. PubMed ID: 26074947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary assessment of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in citrus relatives with a specific focus on flowering.
    Li Y; Wang S; Adhikari PB; Liu B; Liu S; Huang Y; Hu G; Notaguchi M; Xu Q
    Mol Hortic; 2023 Jul; 3(1):13. PubMed ID: 37789480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Identification and Expression Analysis of the SQUAMOSA Promoter-Binding Protein-like (
    Fan E; Liu C; Wang Z; Wang S; Ma W; Lu N; Liu Y; Fu P; Wang R; Lv S; Qu G; Wang J
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large presence/absence variation in the promotor of the ClLOG gene determines trichome elongation in watermelon.
    Ma Y; Wang Y; Zhou Z; Zhang R; Xie Y; Zhang Y; Bo Y; Lyu X; Yang J; Zhang M; Hu Z
    Theor Appl Genet; 2024 Apr; 137(5):98. PubMed ID: 38592431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family.
    Preston JC; Hileman LC
    Front Plant Sci; 2013; 4():80. PubMed ID: 23577017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-scale frequency differentiation along a herbivory gradient in the trichome dimorphism of a wild
    Sato Y; Kudoh H
    Ecol Evol; 2017 Apr; 7(7):2133-2141. PubMed ID: 28405279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prickle morphogenesis in rose is coupled with secondary metabolite accumulation and governed by canonical MBW transcriptional complex.
    Swarnkar MK; Kumar P; Dogra V; Kumar S
    Plant Direct; 2021 Jun; 5(6):e00325. PubMed ID: 34142001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton.
    Liu N; Tu L; Wang L; Hu H; Xu J; Zhang X
    BMC Plant Biol; 2017 Jan; 17(1):7. PubMed ID: 28068913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis.
    Pattanaik S; Patra B; Singh SK; Yuan L
    Front Plant Sci; 2014; 5():259. PubMed ID: 25018756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.