These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24699354)

  • 41. Investigation of some materials as dry binders for direct compression in tablet manufacture. Part 2: Comparative self-binding properties.
    Asker AF; Saied KM; Abdel-Khalek MM
    Pharmazie; 1975 Apr; 30(4):236-8. PubMed ID: 1153489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution to determining the antioxidant capacity of melatonin in orodispersible tablets - comparison with reference antioxidants.
    Muñoz H; García S; Ruiz A
    Arch Med Sci; 2020; 16(4):871-877. PubMed ID: 32542090
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of poorly compactable drug tablets manufactured by direct compression using the mixture experimental design.
    Martinello T; Kaneko TM; Velasco MV; Taqueda ME; Consiglieri VO
    Int J Pharm; 2006 Sep; 322(1-2):87-95. PubMed ID: 16806756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quality by design approach for formulation development: a case study of dispersible tablets.
    Charoo NA; Shamsher AA; Zidan AS; Rahman Z
    Int J Pharm; 2012 Feb; 423(2):167-78. PubMed ID: 22209997
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formulation and evaluation of Cetirizine dihydrochloride orodispersible tablet.
    Subramanian S; Sankar V; Manakadan AA; Ismail S; Andhuvan G
    Pak J Pharm Sci; 2010 Apr; 23(2):232-5. PubMed ID: 20363705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of oral disintegration time of fast disintegrating tablets using texture analyzer and computational optimization.
    Szakonyi G; Zelkó R
    Int J Pharm; 2013 May; 448(2):346-53. PubMed ID: 23558313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta-cyclodextrin as a direct compression excipient compared to conventional ones.
    Saleh SI
    J Pharm Belg; 1993; 48(5):371-7. PubMed ID: 8120790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration.
    Abdelbary G; Eouani C; Prinderre P; Joachim J; Reynier J; Piccerelle P
    Int J Pharm; 2005 Mar; 292(1-2):29-41. PubMed ID: 15725551
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formulation and evaluation of metformin oro-dispersible tablets.
    Kamboj M; Goyal S; Rakha P; Arora G; Dureja H; Nagpal M
    Acta Pol Pharm; 2011; 68(5):717-23. PubMed ID: 21928717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-processed excipients for direct compression of tablets.
    Franc A; Vetchý D; Vodáčková P; Kubaľák R; Jendryková L; Goněc R
    Ceska Slov Farm; 2018 Dec; 67(5-6):175-181. PubMed ID: 30871322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The technologies used for developing orally disintegrating tablets: a review.
    Badgujar BP; Mundada AS
    Acta Pharm; 2011 Jun; 61(2):117-39. PubMed ID: 21684842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. QbD approach of rapid disintegrating tablets incorporating indomethacin solid dispersion.
    Sammour OA; Hammad MA; Zidan AS; Mowafy AG
    Pharm Dev Technol; 2011 Jun; 16(3):219-27. PubMed ID: 20163325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on cyclodextrin polymer. Part 1: The effect of CDP on indomethacin tablet formulation.
    Tarimci N; Celebi N
    Pharmazie; 1988 May; 43(5):323-5. PubMed ID: 3174808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyols as filler-binders for disintegrating tablets prepared by direct compaction.
    Bolhuis GK; Rexwinkel EG; Zuurman K
    Drug Dev Ind Pharm; 2009 Jun; 35(6):671-7. PubMed ID: 19274511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmaceutical design of a new lactose-free coprocessed excipient: application of hydrochlorothiazide as a low solubility drug model.
    Viscasillas Clerch A; Fernandez Campos F; Del Pozo A; Calpena Campmany AC
    Drug Dev Ind Pharm; 2013 Jul; 39(7):961-9. PubMed ID: 22607083
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development and optimization of formulation for treatment of copper deficiency in human organism.
    Savic IM; Nikolic GS; Savic IM; Katarina N; Agbaba D
    Acta Pol Pharm; 2012; 69(4):739-49. PubMed ID: 22876618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ternary complexation of carvedilol, beta-cyclodextrin and citric acid for mouth-dissolving tablet formulation.
    Pokharkar V; Khanna A; Venkatpurwar V; Dhar S; Mandpe L
    Acta Pharm; 2009 Jun; 59(2):121-32. PubMed ID: 19564138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The use of natural and synthetic hydrophilic polymers in the formulation of metformin hydrochloride tablets with different profile release].
    Kołodziejczyk MK; Kołodziejska J; Zgoda MM
    Polim Med; 2012; 42(3-4):167-84. PubMed ID: 23457958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of excipients on the release kinetics of diclofenac sodium and papaverine hydrochloride from composed tablets.
    Kasperek R; Trebacz H; Zimmer Ł; Poleszak E
    Acta Pol Pharm; 2014; 71(3):439-49. PubMed ID: 25265824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlled-release cellulose esters matrices for water-soluble diclofenac sodium: compression and dissolution studies.
    Obeidat WM; Alzoubi NM
    Pharmazie; 2014 Feb; 69(2):96-103. PubMed ID: 24640597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.