These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24699375)

  • 1. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.
    Zheng Y; He ZZ; Yang J; Liu J
    Sci Rep; 2014 Apr; 4():4588. PubMed ID: 24699375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications.
    Wang X; Liu J
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.
    Gao Y; Li H; Liu J
    PLoS One; 2013; 8(8):e69761. PubMed ID: 23936349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pervasive liquid metal printed electronics: From concept incubation to industry.
    Chen S; Liu J
    iScience; 2021 Jan; 24(1):102026. PubMed ID: 33506189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fast and Cost-Effective Transfer Printing of Liquid Metal Inks for Three-Dimensional Wiring in Flexible Electronics.
    Zhao R; Guo R; Xu X; Liu J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36723-36730. PubMed ID: 32660242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct writing of flexible electronics through room temperature liquid metal ink.
    Gao Y; Li H; Liu J
    PLoS One; 2012; 7(9):e45485. PubMed ID: 23029044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Transfer Printing of Liquid Metals and Allied Inks for Rapid Fabrication of Multifunctional Soft Electronics.
    Zhou Z; Yu Y; Xu G; Liu J; Wang Q
    ACS Appl Mater Interfaces; 2024 May; 16(19):25589-25599. PubMed ID: 38696218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly conductive electronics circuits from aerosol jet printed silver inks.
    Skarżyński K; Krzemiński J; Jakubowska M; Słoma M
    Sci Rep; 2021 Sep; 11(1):18141. PubMed ID: 34518558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pad-Printing as a Fabrication Process for Flexible and Compact Multilayer Circuits.
    Jaafar A; Schoinas S; Passeraub P
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost Fabrication of Printed Electronics Devices through Continuous Wave Laser-Induced Forward Transfer.
    Sopeña P; Arrese J; González-Torres S; Fernández-Pradas JM; Cirera A; Serra P
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29412-29417. PubMed ID: 28832108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of TPU-Liquid Metal Composite Inks for the Preparation of Flexible Sensing Electronics.
    Liang S; Huang M; Jiang D; Chen J; Hu L; Chen J; Wang Z
    ChemistryOpen; 2024 Apr; ():e202300301. PubMed ID: 38666528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles.
    Guo R; Li H; Wang H; Zhao X; Yu H; Ye Q
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56597-56606. PubMed ID: 34784187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.