BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24699439)

  • 1. Rapid Changes in Scores on Principal Components of the EEG Spectrum do not Occur in the Course of "Drowsy" Sleep of Varying Length.
    Putilov AA
    Clin EEG Neurosci; 2015 Apr; 46(2):147-52. PubMed ID: 24699439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When does this cortical area drop off? Principal component structuring of the EEG spectrum yields yes-or-no criteria of local sleep onset.
    Putilov AA
    Physiol Behav; 2014 Jun; 133():115-21. PubMed ID: 24878318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principal components of electroencephalographic spectrum as markers of opponent processes underlying ultradian sleep cycles.
    Putilov AA
    Chronobiol Int; 2011 May; 28(4):287-99. PubMed ID: 21539420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for age-associated disinhibition of the wake drive provided by scoring principal components of the resting EEG spectrum in sleep-provoking conditions.
    Putilov AA; Donskaya OG
    Chronobiol Int; 2016; 33(8):995-1008. PubMed ID: 27253971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking stages of non-rapid eye movement sleep to the spectral EEG markers of the drives for sleep and wake.
    Dorokhov VB; Taranov AO; Sakharov DS; Gruzdeva SS; Tkachenko ON; Sveshnikov DS; Bakaeva ZB; Putilov AA
    J Neurophysiol; 2021 Dec; 126(6):1991-2000. PubMed ID: 34817290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha attenuation soon after closing the eyes as an objective indicator of sleepiness.
    Putilov AA; Donskaya OG
    Clin Exp Pharmacol Physiol; 2014 Dec; 41(12):956-64. PubMed ID: 25224885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component structuring of the non-REM Sleep EEG spectrum in older adults yields age-related changes in the sleep and wake drives.
    Putilov AA; Münch MY; Cajochen C
    Curr Aging Sci; 2013 Dec; 6(3):280-93. PubMed ID: 23855458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizability of Frequency Weighting Curve for Extraction of Spectral Drowsy Component From the EEG Signals Recorded in Eyes-Closed Condition.
    Putilov AA; Donskaya OG; Verevkin EG
    Clin EEG Neurosci; 2017 Jul; 48(4):259-269. PubMed ID: 27733638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of sleepiness through principal component analysis of the electroencephalographic spectrum.
    Putilov AA; Donskaya OG; Verevkin EG
    Chronobiol Int; 2012 May; 29(4):509-22. PubMed ID: 22480345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic mapping of EEG spectral power and coherence in delta activity during the transition from wakefulness to sleep.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):155-7. PubMed ID: 10459676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal variations of alpha and sigma band EEG in the waking-sleeping transition period.
    Morikawa T; Hayashi M; Hori T
    Percept Mot Skills; 2002 Aug; 95(1):131-54. PubMed ID: 12365247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral versus EEG-based monitoring of all-night sleep/wake patterns.
    Ogilvie RD; Wilkinson RT
    Sleep; 1988 Apr; 11(2):139-55. PubMed ID: 3381055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.
    Li Y; Tang X; Xu Z; Liu W; Li J
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):147-55. PubMed ID: 26934877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principal component analysis of the EEG spectrum can provide yes-or-no criteria for demarcation of boundaries between NREM sleep stages.
    Putilov AA
    Sleep Sci; 2015; 8(1):16-23. PubMed ID: 26483938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal sleep spindles preceding neocortical sleep onset in humans.
    Sarasso S; Proserpio P; Pigorini A; Moroni F; Ferrara M; De Gennaro L; De Carli F; Lo Russo G; Massimini M; Nobili L
    Neuroimage; 2014 Feb; 86():425-32. PubMed ID: 24176868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of an individual's ability to overcome desire to fall asleep with a higher anterior-posterior gradient in electroencephalographic indexes of sleep pressure.
    Putilov AA; Donskaya OG
    Int J Psychophysiol; 2017 Mar; 113():23-28. PubMed ID: 28077269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeostatic behavior of fast Fourier transform power in very low frequency non-rapid eye movement human electroencephalogram.
    Campbell IG; Higgins LM; Darchia N; Feinberg I
    Neuroscience; 2006 Jul; 140(4):1395-9. PubMed ID: 16631313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalographic sleep inertia of the awakening brain.
    Marzano C; Ferrara M; Moroni F; De Gennaro L
    Neuroscience; 2011 Mar; 176():308-17. PubMed ID: 21167917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study.
    Kaufmann C; Wehrle R; Wetter TC; Holsboer F; Auer DP; Pollmächer T; Czisch M
    Brain; 2006 Mar; 129(Pt 3):655-67. PubMed ID: 16339798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling EEG fractal dimension changes in wake and drowsy states in humans--a preliminary study.
    Bojić T; Vuckovic A; Kalauzi A
    J Theor Biol; 2010 Jan; 262(2):214-22. PubMed ID: 19822155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.