These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 24699531)
1. Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water. Park K; Lee J; Kim HM; Choi KS; Hwang G Sci Rep; 2014 Apr; 4():4592. PubMed ID: 24699531 [TBL] [Abstract][Full Text] [Related]
2. Numerical Analysis of the Effect of Liquid Water during Switching Mode for Unitised Regenerative Proton Exchange Membrane Fuel Cell. Low HC; Lim BH Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103817 [TBL] [Abstract][Full Text] [Related]
3. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells. Shen G; Liu J; Wu HB; Xu P; Liu F; Tongsh C; Jiao K; Li J; Liu M; Cai M; Lemmon JP; Soloveichik G; Li H; Zhu J; Lu Y Nat Commun; 2020 Mar; 11(1):1191. PubMed ID: 32132527 [TBL] [Abstract][Full Text] [Related]
5. Dataset and measurements from a current density sensor during experimental testing of dynamic load cycling for a parallel-serpentine design of a proton exchange membrane fuel cell. Toharias B; Suárez C; Iranzo A; Salva M; Rosa F Data Brief; 2024 Jun; 54():110392. PubMed ID: 38632982 [TBL] [Abstract][Full Text] [Related]
6. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535 [TBL] [Abstract][Full Text] [Related]
7. A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities. Kirkaldy N; Chisholm G; Chen JJ; Cronin L Chem Sci; 2018 Feb; 9(6):1621-1626. PubMed ID: 29675207 [TBL] [Abstract][Full Text] [Related]
8. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules. Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043 [TBL] [Abstract][Full Text] [Related]
9. Ceria Stabilized by Titanium Carbide as a Sustainable Filler in the Nafion Matrix Improves the Mechanical Integrity, Electrochemical Durability, and Hydrogen Impermeability of Proton-Exchange Membrane Fuel Cells: Effects of the Filler Content. Vinothkannan M; Ramakrishnan S; Kim AR; Lee HK; Yoo DJ ACS Appl Mater Interfaces; 2020 Feb; 12(5):5704-5716. PubMed ID: 31917548 [TBL] [Abstract][Full Text] [Related]
10. Development and performance assessment of new solar and fuel cell-powered oxygen generators and ventilators for COVID-19 patients. Siddiqui O; Ishaq H; Dincer I Int J Hydrogen Energy; 2021 Sep; 46(66):33053-33067. PubMed ID: 34518722 [TBL] [Abstract][Full Text] [Related]
11. Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field. Zhang H; Zhang L; Zhang Y; Hou Z; Liu J ACS Omega; 2023 Mar; 8(11):10191-10201. PubMed ID: 36969400 [TBL] [Abstract][Full Text] [Related]
12. High-Performance Chemically Regenerative Redox Fuel Cells Using a NO Han SB; Kwak DH; Park HS; Choi IA; Park JY; Kim SJ; Kim MC; Hong S; Park KW Angew Chem Int Ed Engl; 2017 Mar; 56(11):2893-2897. PubMed ID: 28157264 [TBL] [Abstract][Full Text] [Related]
13. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO. Kim T; Sim C; Kim M Appl Radiat Isot; 2008 May; 66(5):593-605. PubMed ID: 18242098 [TBL] [Abstract][Full Text] [Related]
14. Experimental and Numerical Study of Proton Exchange Membrane Fuel Cells with a Novel Compound Flow Field. Wang Y; Wang L; Ji X; Zhou Y; Wu M ACS Omega; 2021 Aug; 6(34):21892-21899. PubMed ID: 34497884 [TBL] [Abstract][Full Text] [Related]
15. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
16. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications. Adlhart OJ; Rohonyi P; Modroukas D; Driller J ASAIO J; 1997; 43(3):214-9. PubMed ID: 9152494 [TBL] [Abstract][Full Text] [Related]
17. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells. Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593 [TBL] [Abstract][Full Text] [Related]
18. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. Li W; Bonakdarpour A; Gyenge E; Wilkinson DP ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111 [TBL] [Abstract][Full Text] [Related]
19. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Ding H; Wu W; Jiang C; Ding Y; Bian W; Hu B; Singh P; Orme CJ; Wang L; Zhang Y; Ding D Nat Commun; 2020 Apr; 11(1):1907. PubMed ID: 32312963 [TBL] [Abstract][Full Text] [Related]
20. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell. Zhao Y; Hu C; Xu C; Cho HM; Chen D ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]