These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24699631)

  • 1. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
    Meyer AF; Diepenbrock JP; Happel MF; Ohl FW; Anemüller J
    PLoS One; 2014; 9(4):e93062. PubMed ID: 24699631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
    Meyer AF; Diepenbrock JP; Ohl FW; Anemüller J
    J Neurosci Methods; 2015 May; 246():119-33. PubMed ID: 25744059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
    Calabrese A; Schumacher JW; Schneider DM; Paninski L; Woolley SM
    PLoS One; 2011 Jan; 6(1):e16104. PubMed ID: 21264310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spectro-temporal receptive field. A functional characteristic of auditory neurons.
    Aertsen AM; Johannesma PI
    Biol Cybern; 1981; 42(2):133-43. PubMed ID: 7326288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.
    Meyer AF; Diepenbrock JP; Ohl FW; Anemüller J
    Front Comput Neurosci; 2014; 8():165. PubMed ID: 25566049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
    Theunissen FE; Sen K; Doupe AJ
    J Neurosci; 2000 Mar; 20(6):2315-31. PubMed ID: 10704507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli.
    Aertsen AM; Johannesma PI
    Biol Cybern; 1981; 42(2):145-56. PubMed ID: 6976799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic spectrotemporal feature selectivity in the auditory midbrain.
    Lesica NA; Grothe B
    J Neurosci; 2008 May; 28(21):5412-21. PubMed ID: 18495875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Essential Complexity of Auditory Receptive Fields.
    Thorson IL; Liénard J; David SV
    PLoS Comput Biol; 2015 Dec; 11(12):e1004628. PubMed ID: 26683490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike timing precision changes with spike rate adaptation in the owl's auditory space map.
    Keller CH; Takahashi TT
    J Neurophysiol; 2015 Oct; 114(4):2204-19. PubMed ID: 26269555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; Escabí MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative nonlinearities in auditory cortical neurons.
    Atencio CA; Sharpee TO; Schreiner CE
    Neuron; 2008 Jun; 58(6):956-66. PubMed ID: 18579084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity of coding in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2010 Jan; 165(2):612-20. PubMed ID: 19853021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating receptive fields in the presence of spike-time jitter.
    Gollisch T
    Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex.
    Valentine PA; Eggermont JJ
    Hear Res; 2004 Oct; 196(1-2):119-33. PubMed ID: 15464309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-space receptive fields of semicircular canal afferent neurons in the bullfrog.
    Paulin MG; Hoffman LF
    Neurocomputing (Amst); 2001 Jun; 38-40(1-4):293-8. PubMed ID: 12194188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.