BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24699650)

  • 1. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1.
    Do H; Kim SJ; Kim HJ; Lee JH
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1061-73. PubMed ID: 24699650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1.
    Do H; Lee JH; Lee SG; Kim HJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jul; 68(Pt 7):806-9. PubMed ID: 22750870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving thermal hysteresis activity of antifreeze protein from recombinant Pichia pastoris by removal of N-glycosylation.
    Kim EJ; Lee JH; Lee SG; Han SJ
    Prep Biochem Biotechnol; 2017 Mar; 47(3):299-304. PubMed ID: 27737617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins.
    Lee HH; Lee HJ; Kim HJ; Lee JH; Ko Y; Kim SM; Lee JR; Suh CS; Kim SH
    Hum Reprod; 2015 Sep; 30(9):2110-9. PubMed ID: 26202918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30.
    Park KS; Do H; Lee JH; Park SI; Kim Ej; Kim SJ; Kang SH; Kim HJ
    Cryobiology; 2012 Jun; 64(3):286-96. PubMed ID: 22426061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of rigidity of ice-binding protein (FfIBP) for hyperthermal hysteresis activity and microbial survival.
    Hwang J; Kim B; Lee MJ; Kim EJ; Cho SM; Lee SG; Han SJ; Kim K; Lee JH; Do H
    Int J Biol Macromol; 2022 Apr; 204():485-499. PubMed ID: 35149098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.
    Banerjee R; Chakraborti P; Bhowmick R; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(7):1424-41. PubMed ID: 25190099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for antifreeze activity of ice-binding protein from arctic yeast.
    Lee JH; Park AK; Do H; Park KS; Moh SH; Chi YM; Kim HJ
    J Biol Chem; 2012 Mar; 287(14):11460-8. PubMed ID: 22303017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered ice-binding protein (FfIBP) shows increased stability and resistance to thermal and chemical denaturation compared to the wildtype.
    Nam Y; Nguyen DL; Hoang T; Kim B; Lee JH; Do H
    Sci Rep; 2024 Feb; 14(1):3234. PubMed ID: 38331970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Marine-Derived Ice-Binding Proteins on the Cryopreservation of Marine Microalgae.
    Kim HJ; Koo BW; Kim D; Seo YS; Nam YK
    Mar Drugs; 2017 Dec; 15(12):. PubMed ID: 29194380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Ca²⁺ in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesin.
    Guo S; Garnham CP; Karunan Partha S; Campbell RL; Allingham JS; Davies PL
    FEBS J; 2013 Nov; 280(22):5919-32. PubMed ID: 24024640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing-enhanced oxidation of iodide by hydrogen peroxide in the presence of antifreeze proteins from the Arctic yeast Leucosporidium sp.AY30.
    Kim B; Do H; Kim BM; Lee JH; Kim S; Kim EJ; Lee J; Cho SM; Kim K
    Environ Res; 2022 Sep; 212(Pt A):113233. PubMed ID: 35390302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum.
    Kawahara H; Iwanaka Y; Higa S; Muryoi N; Sato M; Honda M; Omura H; Obata H
    Cryo Letters; 2007; 28(1):39-49. PubMed ID: 17369961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
    Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H
    Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations.
    Braslavsky I; Drori R
    J Vis Exp; 2013 Feb; (72):e4189. PubMed ID: 23407403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.