BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24700246)

  • 1. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L.
    Pérez-Díaz R; Ryngajllo M; Pérez-Díaz J; Peña-Cortés H; Casaretto JA; González-Villanueva E; Ruiz-Lara S
    Plant Cell Rep; 2014 Jul; 33(7):1147-59. PubMed ID: 24700246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.
    Bogs J; Jaffé FW; Takos AM; Walker AR; Robinson SP
    Plant Physiol; 2007 Mar; 143(3):1347-61. PubMed ID: 17208963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J; Downey MO; Harvey JS; Ashton AR; Tanner GJ; Robinson SP
    Plant Physiol; 2005 Oct; 139(2):652-63. PubMed ID: 16169968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development.
    Bogs J; Ebadi A; McDavid D; Robinson SP
    Plant Physiol; 2006 Jan; 140(1):279-91. PubMed ID: 16377741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit.
    Yang S; Jiang Y; Xu L; Shiratake K; Luo Z; Zhang Q
    Plant Physiol Biochem; 2016 Nov; 108():241-250. PubMed ID: 27472890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.
    Gainza-Cortés F; Pérez-Dïaz R; Pérez-Castro R; Tapia J; Casaretto JA; González S; Peña-Cortés H; Ruiz-Lara S; González E
    BMC Plant Biol; 2012 Jul; 12():111. PubMed ID: 22824090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.
    Deluc L; Bogs J; Walker AR; Ferrier T; Decendit A; Merillon JM; Robinson SP; Barrieu F
    Plant Physiol; 2008 Aug; 147(4):2041-53. PubMed ID: 18539781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters.
    Gomez C; Terrier N; Torregrosa L; Vialet S; Fournier-Level A; Verriès C; Souquet JM; Mazauric JP; Klein M; Cheynier V; Ageorges A
    Plant Physiol; 2009 May; 150(1):402-15. PubMed ID: 19297587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry.
    Huang YF; Vialet S; Guiraud JL; Torregrosa L; Bertrand Y; Cheynier V; This P; Terrier N
    New Phytol; 2014 Feb; 201(3):795-809. PubMed ID: 24147899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries.
    Czemmel S; Stracke R; Weisshaar B; Cordon N; Harris NN; Walker AR; Robinson SP; Bogs J
    Plant Physiol; 2009 Nov; 151(3):1513-30. PubMed ID: 19741049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.
    De Angeli A; Baetz U; Francisco R; Zhang J; Chaves MM; Regalado A
    Planta; 2013 Aug; 238(2):283-91. PubMed ID: 23645258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway.
    Terrier N; Torregrosa L; Ageorges A; Vialet S; Verriès C; Cheynier V; Romieu C
    Plant Physiol; 2009 Feb; 149(2):1028-41. PubMed ID: 19098092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.).
    Matus JT; Poupin MJ; Cañón P; Bordeu E; Alcalde JA; Arce-Johnson P
    Plant Mol Biol; 2010 Apr; 72(6):607-20. PubMed ID: 20112051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.).
    Ren C; Zhang Z; Wang Y; Li S; Liang Z
    BMC Genomics; 2016 Aug; 17(1):605. PubMed ID: 27516172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin.
    Castellarin SD; Di Gaspero G; Marconi R; Nonis A; Peterlunger E; Paillard S; Adam-Blondon AF; Testolin R
    BMC Genomics; 2006 Jan; 7():12. PubMed ID: 16433923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry.
    Pratelli R; Lacombe B; Torregrosa L; Gaymard F; Romieu C; Thibaud JB; Sentenac H
    Plant Physiol; 2002 Feb; 128(2):564-77. PubMed ID: 11842160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine.
    Hichri I; Heppel SC; Pillet J; Léon C; Czemmel S; Delrot S; Lauvergeat V; Bogs J
    Mol Plant; 2010 May; 3(3):509-23. PubMed ID: 20118183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves.
    Gutha LR; Casassa LF; Harbertson JF; Naidu RA
    BMC Plant Biol; 2010 Aug; 10():187. PubMed ID: 20731850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST.
    Gomez C; Conejero G; Torregrosa L; Cheynier V; Terrier N; Ageorges A
    Plant J; 2011 Sep; 67(6):960-70. PubMed ID: 21605207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.