These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24700247)

  • 41. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.).
    King ZR; Bray AL; Lafayette PR; Parrott WA
    Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perennial Ryegrass (Lolium perenne L.).
    Altpeter F
    Methods Mol Biol; 2006; 344():55-64. PubMed ID: 17033051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants.
    Kapusi E; Hensel G; Coronado MJ; Broeders S; Marthe C; Otto I; Kumlehn J
    Plant Mol Biol; 2013 Jan; 81(1-2):149-60. PubMed ID: 23180016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Agrobacterium-mediated maize transformation: immature embryos versus callus.
    Sidorov V; Duncan D
    Methods Mol Biol; 2009; 526():47-58. PubMed ID: 19378003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass.
    Yan J; Liu Y; Wang K; Li D; Hu Q; Zhang W
    Plant Sci; 2018 Nov; 276():143-151. PubMed ID: 30348312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration.
    Subramanyam K; Subramanyam K; Sailaja KV; Srinivasulu M; Lakshmidevi K
    Plant Cell Rep; 2011 Mar; 30(3):425-36. PubMed ID: 21212957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.
    Zhang T; Wu SJ
    Methods Mol Biol; 2012; 847():245-53. PubMed ID: 22351014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of efficient Catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants.
    Wang Q; Xing S; Pan Q; Yuan F; Zhao J; Tian Y; Chen Y; Wang G; Tang K
    BMC Biotechnol; 2012 Jun; 12():34. PubMed ID: 22748182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Obtaining of transgenic French bean plants (Phaseolus vulgaris L.) resistant to the herbicide pursuit by Agrobacterium-mediated transformation.
    Nifantova SN; Komarnickiy IK; Kuchuk NV
    Tsitol Genet; 2011; 45(2):41-5. PubMed ID: 21568221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for
    Lin CY; Donohoe BS; Ahuja N; Garrity DM; Qu R; Tucker MP; Himmel ME; Wei H
    Plant Methods; 2017; 13():113. PubMed ID: 29270209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new double right border binary vector for producing marker-free transgenic plants.
    Matheka JM; Anami S; Gethi J; Omer RA; Alakonya A; Machuka J; Runo S
    BMC Res Notes; 2013 Nov; 6():448. PubMed ID: 24207020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.).
    Yang J; Bi HP; Fan WJ; Zhang M; Wang HX; Zhang P
    Plant Sci; 2011 Dec; 181(6):701-11. PubMed ID: 21958713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium.
    Khanna HK; Daggard GE
    Plant Cell Rep; 2003 Jan; 21(5):429-36. PubMed ID: 12789445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Agrobacterium-mediated sorghum transformation.
    Zhao ZY; Cai T; Tagliani L; Miller M; Wang N; Pang H; Rudert M; Schroeder S; Hondred D; Seltzer J; Pierce D
    Plant Mol Biol; 2000 Dec; 44(6):789-98. PubMed ID: 11202440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens.
    Le VQ; Belles-Isles J; Dusabenyagasani M; Tremblay FM
    J Exp Bot; 2001 Nov; 52(364):2089-95. PubMed ID: 11604447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens.
    Ye X; Williams EJ; Shen J; Johnson S; Lowe B; Radke S; Strickland S; Esser JA; Petersen MW; Gilbertson LA
    Transgenic Res; 2011 Aug; 20(4):773-86. PubMed ID: 21042934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Agrobacterium-mediated in planta genetic transformation of sugarcane setts.
    Mayavan S; Subramanyam K; Jaganath B; Sathish D; Manickavasagam M; Ganapathi A
    Plant Cell Rep; 2015 Oct; 34(10):1835-48. PubMed ID: 26152769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants.
    Park J; Lee YK; Kang BK; Chung WI
    Theor Appl Genet; 2004 Nov; 109(8):1562-7. PubMed ID: 15448898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites.
    Yao JL; Tomes S; Gleave AP
    Plant Cell Rep; 2013 May; 32(5):703-14. PubMed ID: 23494389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation.
    McCormac AC; Elliott MC; Chen DF
    Mol Biotechnol; 1998 Apr; 9(2):155-9. PubMed ID: 9658392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.