These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 24700250)

  • 21. Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction.
    Paul B; Bhanja P; Sharma S; Yamauchi Y; Alothman ZA; Wang ZL; Bal R; Bhaumik A
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):322-332. PubMed ID: 32827957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Electrocatalytic Water Oxidation of Ultrathin Porous Co
    Hu C; Sun D; Liu J; Zhang Q; Li X; Fu H; Liu M; Xu J; Jiang G; Lu Y
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst.
    Rosen J; Hutchings GS; Jiao F
    J Am Chem Soc; 2013 Mar; 135(11):4516-21. PubMed ID: 23448405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stepwise chemical oxidation to access ultrathin metal (oxy)-hydroxide nanosheets for the oxygen evolution reaction.
    Lv J; Guan X; Huang Y; Cai L; Yu M; Li X; Yu Y; Chen D
    Nanoscale; 2021 Oct; 13(37):15755-15762. PubMed ID: 34528043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of hollow cobalt oxide nanopowders by a salt-assisted spray pyrolysis process applying nanoscale Kirkendall diffusion and their electrochemical properties.
    Ju HS; Cho JS; Kim JH; Choi YJ; Kang YC
    Phys Chem Chem Phys; 2015 Dec; 17(47):31988-94. PubMed ID: 26571144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation.
    Liu Y; Cheng H; Lyu M; Fan S; Liu Q; Zhang W; Zhi Y; Wang C; Xiao C; Wei S; Ye B; Xie Y
    J Am Chem Soc; 2014 Nov; 136(44):15670-5. PubMed ID: 25310506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous Cobalt-Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting.
    Wang X; Li Z; Wu DY; Shen GR; Zou C; Feng Y; Liu H; Dong CK; Du XW
    Small; 2019 Feb; 15(8):e1804832. PubMed ID: 30714319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low surface energy plane exposed Co3O4 nanocubes supported on nitrogen-doped graphene as an electrocatalyst for efficient water oxidation.
    Singh SK; Dhavale VM; Kurungot S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):442-51. PubMed ID: 25495057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the Catalytic Activity of Co
    Gao R; Shang Z; Zheng L; Wang J; Sun L; Hu Z; Liu X
    Inorg Chem; 2019 Apr; 58(8):4989-4996. PubMed ID: 30788960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation.
    Bao J; Zhang X; Fan B; Zhang J; Zhou M; Yang W; Hu X; Wang H; Pan B; Xie Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7399-404. PubMed ID: 25951435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions.
    Chen P; Xu K; Zhou T; Tong Y; Wu J; Cheng H; Lu X; Ding H; Wu C; Xie Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2488-92. PubMed ID: 26757358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of Hierarchical MoSe
    Hu S; Jiang Q; Ding S; Liu Y; Wu Z; Huang Z; Zhou T; Guo Z; Hu J
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25483-25492. PubMed ID: 29979570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-templated synthesis of Co
    Ren JT; Zheng YL; Yuan K; Zhou L; Wu K; Zhang YW
    Nanoscale; 2020 Jan; 12(2):755-762. PubMed ID: 31829368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes.
    Ma TY; Dai S; Jaroniec M; Qiao SZ
    J Am Chem Soc; 2014 Oct; 136(39):13925-31. PubMed ID: 25216300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.
    Jin H; Wang J; Su D; Wei Z; Pang Z; Wang Y
    J Am Chem Soc; 2015 Feb; 137(7):2688-94. PubMed ID: 25658518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Convenient Synthesis Route for Co
    Gurunathan P; Ette PM; Lakshminarasimhan N; Ramesha K
    ACS Omega; 2017 Nov; 2(11):7647-7657. PubMed ID: 31457322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co@Co3O4 core-shell particle encapsulated N-doped mesoporous carbon cage hybrids as active and durable oxygen-evolving catalysts.
    Li X; Fang Y; Wen L; Li F; Yin G; Chen W; An X; Jin J; Ma J
    Dalton Trans; 2016 Apr; 45(13):5575-82. PubMed ID: 26914166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co
    Zhang G; Yang J; Wang H; Chen H; Yang J; Pan F
    ACS Appl Mater Interfaces; 2017 May; 9(19):16159-16167. PubMed ID: 28447457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields.
    Zhang X; Zhao Y; Xu C
    Nanoscale; 2014 Apr; 6(7):3638-46. PubMed ID: 24562602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.