BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 24700267)

  • 1. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.
    Madaghiele M; Marotta F; Demitri C; Montagna F; Maffezzoli A; Sannino A
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):183-92. PubMed ID: 24700267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol).
    Du G; Nie L; Gao G; Sun Y; Hou R; Zhang H; Chen T; Fu J
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3003-8. PubMed ID: 25622181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration.
    Lee HJ; Sen A; Bae S; Lee JS; Webb K
    Acta Biomater; 2015 Mar; 14():43-52. PubMed ID: 25523876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of crosslinking density on swelling and mechanical properties of PEGDA400/PCLTMA900 hydrogels.
    Metz J; Gonnerman K; Chu A; Chu TM
    Biomed Sci Instrum; 2006; 42():389-94. PubMed ID: 16817639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering.
    Beamish JA; Zhu J; Kottke-Marchant K; Marchant RE
    J Biomed Mater Res A; 2010 Feb; 92(2):441-50. PubMed ID: 19191313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells.
    Buxton AN; Zhu J; Marchant R; West JL; Yoo JU; Johnstone B
    Tissue Eng; 2007 Oct; 13(10):2549-60. PubMed ID: 17655489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and mineralization of a biocompatible double network hydrogel.
    Yang Q; Song F; Zou X; Liao L
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):431-443. PubMed ID: 28056727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New semi-interpenetrating network hydrogels: synthesis, characterization and properties.
    Zhao SP; Ma D; Zhang LM
    Macromol Biosci; 2006 Jun; 6(6):445-51. PubMed ID: 16761276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering.
    Munoz-Pinto DJ; Jimenez-Vergara AC; Gharat TP; Hahn MS
    Biomaterials; 2015 Feb; 40():32-42. PubMed ID: 25433604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
    Ingavle GC; Gehrke SH; Detamore MS
    Biomaterials; 2014 Apr; 35(11):3558-70. PubMed ID: 24462353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Martinez-Diaz GJ; Kao WJ
    J Biomed Mater Res A; 2003 Oct; 67(1):224-34. PubMed ID: 14517880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.
    Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M
    Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
    DeKosky BJ; Dormer NH; Ingavle GC; Roatch CH; Lomakin J; Detamore MS; Gehrke SH
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1533-42. PubMed ID: 20626274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of poly(ethylene glycol)-diacrylate macromer polymerization within a multicomponent semi-interpenetrating polymer network system.
    Witte RP; Blake AJ; Palmer C; Kao WJ
    J Biomed Mater Res A; 2004 Dec; 71(3):508-18. PubMed ID: 15386483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization.
    Wei W; Hu X; Qi X; Yu H; Liu Y; Li J; Zhang J; Dong W
    Colloids Surf B Biointerfaces; 2015 Jan; 125():1-11. PubMed ID: 25460596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro.
    Sokic S; Papavasiliou G
    Tissue Eng Part A; 2012 Dec; 18(23-24):2477-86. PubMed ID: 22725267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.