BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24700367)

  • 1. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass.
    Roche CM; Glass NL; Blanch HW; Clark DS
    Biotechnol Bioeng; 2014 Jun; 111(6):1097-107. PubMed ID: 24700367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa.
    Zhao C; Chen S; Fang H
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9577-9584. PubMed ID: 30225531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Neurospora crassa for improved cellobiose and cellobionate production.
    Hildebrand A; Szewczyk E; Lin H; Kasuga T; Fan Z
    Appl Environ Microbiol; 2015 Jan; 81(2):597-603. PubMed ID: 25381238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa.
    Xiong Y; Sun J; Glass NL
    PLoS Genet; 2014 Aug; 10(8):e1004500. PubMed ID: 25144221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa.
    Tian C; Beeson WT; Iavarone AT; Sun J; Marletta MA; Cate JH; Glass NL
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22157-62. PubMed ID: 20018766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins.
    Znameroski EA; Coradetti ST; Roche CM; Tsai JC; Iavarone AT; Cate JH; Glass NL
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6012-7. PubMed ID: 22474347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa.
    Sun J; Glass NL
    PLoS One; 2011; 6(9):e25654. PubMed ID: 21980519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?
    Dogaris I; Mamma D; Kekos D
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1457-73. PubMed ID: 23318834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Gene Network with Positive Feedback Loop Amplifies Cellulase Gene Expression in Neurospora crassa.
    Matsu-Ura T; Dovzhenok AA; Coradetti ST; Subramanian KR; Meyer DR; Kwon JJ; Kim C; Salomonis N; Glass NL; Lim S; Hong CI
    ACS Synth Biol; 2018 May; 7(5):1395-1405. PubMed ID: 29625007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.
    Xiong Y; Coradetti ST; Li X; Gritsenko MA; Clauss T; Petyuk V; Camp D; Smith R; Cate JHD; Yang F; Glass NL
    Fungal Genet Biol; 2014 Nov; 72():21-33. PubMed ID: 24881580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.
    Slininger PJ; Dien BS; Kurtzman CP; Moser BR; Bakota EL; Thompson SR; O'Bryan PJ; Cotta MA; Balan V; Jin M; Sousa Lda C; Dale BE
    Biotechnol Bioeng; 2016 Aug; 113(8):1676-90. PubMed ID: 26724417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation.
    Ruan Z; Zanotti M; Zhong Y; Liao W; Ducey C; Liu Y
    Biotechnol Bioeng; 2013 Apr; 110(4):1039-49. PubMed ID: 23124976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator.
    Cupertino FB; Virgilio S; Freitas FZ; Candido Tde S; Bertolini MC
    Fungal Genet Biol; 2015 Apr; 77():82-94. PubMed ID: 25889113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotrimeric G-Protein Signaling Is Required for Cellulose Degradation in Neurospora crassa.
    Collier LA; Ghosh A; Borkovich KA
    mBio; 2020 Nov; 11(6):. PubMed ID: 33234686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of a helix-loop-helix transcription factor CHC-1 in CO(2)-mediated conidiation suppression in Neurospora crassa.
    Sun X; Zhang H; Zhang Z; Wang Y; Li S
    Fungal Genet Biol; 2011 Dec; 48(12):1077-86. PubMed ID: 22001287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.
    Chen L; Zhang J; Lee J; Chen WN
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6739-50. PubMed ID: 24769906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.
    Dogaris I; Gkounta O; Mamma D; Kekos D
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):541-50. PubMed ID: 22573272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The type of mutations induced by carbon-ion-beam irradiation of the filamentous fungus Neurospora crassa.
    Ma L; Kazama Y; Inoue H; Abe T; Hatakeyama S; Tanaka S
    Fungal Biol; 2013 Apr; 117(4):227-38. PubMed ID: 23622717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
    Wu VW; Thieme N; Huberman LB; Dietschmann A; Kowbel DJ; Lee J; Calhoun S; Singan VR; Lipzen A; Xiong Y; Monti R; Blow MJ; O'Malley RC; Grigoriev IV; Benz JP; Glass NL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6003-6013. PubMed ID: 32111691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.