BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24700444)

  • 1. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor.
    Wen L; Mi Y; Wang C; Fang Y; Grote F; Zhao H; Zhou M; Lei Y
    Small; 2014 Aug; 10(15):3162-8. PubMed ID: 24700444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of TiO
    Xiong Q; Zheng C; Chi H; Zhang J; Ji Z
    Nanotechnology; 2017 Feb; 28(5):055405. PubMed ID: 28029096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of TiO
    Ahmed F; Pervez SA; Aljaafari A; Alshoaibi A; Abuhimd H; Oh J; Koo BH
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31683615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor.
    Liu R; Cho SI; Lee SB
    Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.
    Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX
    Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials.
    Liu X; Shi S; Xiong Q; Li L; Zhang Y; Tang H; Gu C; Wang X; Tu J
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8790-5. PubMed ID: 23937272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors.
    Zhang X; Peng X; Li W; Li L; Gao B; Wu G; Huo K; Chu PK
    Small; 2015 Apr; 11(15):1847-56. PubMed ID: 25546735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Uniform Atomic Layer-Deposited MoS
    Nandi DK; Sahoo S; Sinha S; Yeo S; Kim H; Bulakhe RN; Heo J; Shim JJ; Kim SH
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40252-40264. PubMed ID: 29099166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors.
    Li Q; Lu XF; Xu H; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2726-33. PubMed ID: 24533678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor.
    Liang B; Zheng Z; Retana M; Lu K; Wood T; Ai Y; Zu X; Zhou W
    Nanotechnology; 2019 Jul; 30(29):295401. PubMed ID: 30743258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO₂ nanoparticles for a high-performance and semi-transparent supercapacitor electrode.
    Rodríguez-Moreno J; Navarrete-Astorga E; Dalchiele EA; Schrebler R; Ramos-Barrado JR; Martín F
    Chem Commun (Camb); 2014 May; 50(42):5652-5. PubMed ID: 24756158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition.
    An J; Kim YB; Prinz FB
    Phys Chem Chem Phys; 2013 May; 15(20):7520-5. PubMed ID: 23579635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode.
    Li P; Yang Y; Shi E; Shen Q; Shang Y; Wu S; Wei J; Wang K; Zhu H; Yuan Q; Cao A; Wu D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5228-34. PubMed ID: 24621200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of yttria-stabilized zirconia nanotubes by atomic layer deposition toward efficient solid electrolytes.
    Kim E; Kim H; Bae C; Lee D; Moon J; Kim J; Shin H
    Nano Converg; 2017; 4(1):31. PubMed ID: 29238653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors.
    Zhai T; Wang F; Yu M; Xie S; Liang C; Li C; Xiao F; Tang R; Wu Q; Lu X; Tong Y
    Nanoscale; 2013 Aug; 5(15):6790-6. PubMed ID: 23765341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt Atom on the Wall of Atomic Layer Deposition (ALD)-Made MoS
    Jiao S; Kong M; Hu Z; Zhou S; Xu X; Liu L
    Small; 2022 Apr; 18(16):e2105129. PubMed ID: 35253963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.
    Stano KL; Carroll M; Padbury R; McCord M; Jur JS; Bradford PD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19135-43. PubMed ID: 25275708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.