These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24700444)
1. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor. Wen L; Mi Y; Wang C; Fang Y; Grote F; Zhao H; Zhou M; Lei Y Small; 2014 Aug; 10(15):3162-8. PubMed ID: 24700444 [TBL] [Abstract][Full Text] [Related]
2. Reconstruction of TiO Xiong Q; Zheng C; Chi H; Zhang J; Ji Z Nanotechnology; 2017 Feb; 28(5):055405. PubMed ID: 28029096 [TBL] [Abstract][Full Text] [Related]
3. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability. Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. Tang P; Han L; Zhang L ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of TiO Ahmed F; Pervez SA; Aljaafari A; Alshoaibi A; Abuhimd H; Oh J; Koo BH Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31683615 [TBL] [Abstract][Full Text] [Related]
6. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Liu R; Cho SI; Lee SB Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589 [TBL] [Abstract][Full Text] [Related]
7. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. Liu X; Shi S; Xiong Q; Li L; Zhang Y; Tang H; Gu C; Wang X; Tu J ACS Appl Mater Interfaces; 2013 Sep; 5(17):8790-5. PubMed ID: 23937272 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Liu R; Duay J; Lane T; Bok Lee S Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700 [TBL] [Abstract][Full Text] [Related]
10. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors. Zhang X; Peng X; Li W; Li L; Gao B; Wu G; Huo K; Chu PK Small; 2015 Apr; 11(15):1847-56. PubMed ID: 25546735 [TBL] [Abstract][Full Text] [Related]
11. Highly Uniform Atomic Layer-Deposited MoS Nandi DK; Sahoo S; Sinha S; Yeo S; Kim H; Bulakhe RN; Heo J; Shim JJ; Kim SH ACS Appl Mater Interfaces; 2017 Nov; 9(46):40252-40264. PubMed ID: 29099166 [TBL] [Abstract][Full Text] [Related]
12. Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. Li Q; Lu XF; Xu H; Tong YX; Li GR ACS Appl Mater Interfaces; 2014 Feb; 6(4):2726-33. PubMed ID: 24533678 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Liang B; Zheng Z; Retana M; Lu K; Wood T; Ai Y; Zu X; Zhou W Nanotechnology; 2019 Jul; 30(29):295401. PubMed ID: 30743258 [TBL] [Abstract][Full Text] [Related]
14. Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO₂ nanoparticles for a high-performance and semi-transparent supercapacitor electrode. Rodríguez-Moreno J; Navarrete-Astorga E; Dalchiele EA; Schrebler R; Ramos-Barrado JR; Martín F Chem Commun (Camb); 2014 May; 50(42):5652-5. PubMed ID: 24756158 [TBL] [Abstract][Full Text] [Related]
15. Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition. An J; Kim YB; Prinz FB Phys Chem Chem Phys; 2013 May; 15(20):7520-5. PubMed ID: 23579635 [TBL] [Abstract][Full Text] [Related]
16. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode. Li P; Yang Y; Shi E; Shen Q; Shang Y; Wu S; Wei J; Wang K; Zhu H; Yuan Q; Cao A; Wu D ACS Appl Mater Interfaces; 2014 Apr; 6(7):5228-34. PubMed ID: 24621200 [TBL] [Abstract][Full Text] [Related]
17. Formation of yttria-stabilized zirconia nanotubes by atomic layer deposition toward efficient solid electrolytes. Kim E; Kim H; Bae C; Lee D; Moon J; Kim J; Shin H Nano Converg; 2017; 4(1):31. PubMed ID: 29238653 [TBL] [Abstract][Full Text] [Related]
18. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Zhai T; Wang F; Yu M; Xie S; Liang C; Li C; Xiao F; Tang R; Wu Q; Lu X; Tong Y Nanoscale; 2013 Aug; 5(15):6790-6. PubMed ID: 23765341 [TBL] [Abstract][Full Text] [Related]
19. Pt Atom on the Wall of Atomic Layer Deposition (ALD)-Made MoS Jiao S; Kong M; Hu Z; Zhou S; Xu X; Liu L Small; 2022 Apr; 18(16):e2105129. PubMed ID: 35253963 [TBL] [Abstract][Full Text] [Related]
20. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays. Stano KL; Carroll M; Padbury R; McCord M; Jur JS; Bradford PD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19135-43. PubMed ID: 25275708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]