These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 24700561)
1. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation. Tabujew I; Freidel C; Krieg B; Helm M; Koynov K; Müllen K; Peneva K Macromol Rapid Commun; 2014 Jul; 35(13):1191-7. PubMed ID: 24700561 [TBL] [Abstract][Full Text] [Related]
2. Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression. Wu Y; Ji J; Yang R; Zhang X; Li Y; Pu Y; Li X Drug Deliv; 2013; 20(7):296-305. PubMed ID: 24044647 [TBL] [Abstract][Full Text] [Related]
3. Studies on guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide co-polymers as gene delivery carrier. Qin Z; Liu W; Guo L; Li X J Biomater Sci Polym Ed; 2012; 23(1-4):133-52. PubMed ID: 22133350 [TBL] [Abstract][Full Text] [Related]
4. Galactosylated N-2-hydroxypropyl methacrylamide-b-N-3-guanidinopropyl methacrylamide block copolymers as hepatocyte-targeting gene carriers. Qin Z; Liu W; Li L; Guo L; Yao C; Li X Bioconjug Chem; 2011 Aug; 22(8):1503-12. PubMed ID: 21688826 [TBL] [Abstract][Full Text] [Related]
5. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Golan M; Feinshtein V; David A Eur J Pharm Biopharm; 2016 Dec; 109():103-112. PubMed ID: 27702685 [TBL] [Abstract][Full Text] [Related]
6. Tailored design of Au nanoparticle-siRNA carriers utilizing reversible addition-fragmentation chain transfer polymers. Kirkland-York S; Zhang Y; Smith AE; York AW; Huang F; McCormick CL Biomacromolecules; 2010 Apr; 11(4):1052-9. PubMed ID: 20337403 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of Indole Significantly Improves the Transfection Efficiency of Guanidinium-Containing Poly(Methacrylamide)s. Cokca C; Zartner L; Tabujew I; Fischer D; Peneva K Macromol Rapid Commun; 2020 Mar; 41(6):e1900668. PubMed ID: 32077146 [TBL] [Abstract][Full Text] [Related]
9. Multivalent methionine-functionalized biocompatible block copolymers for targeted small interfering RNA delivery and subsequent reversal effect on adriamycin resistance in human breast cancer cell line MCF-7/ADR. Wu Y; Zhang W; Li T; Ma R; Chen D; Zhang J; Wu J; Tang J J Gene Med; 2017 Aug; 19(8):. PubMed ID: 28688213 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of multivalent folate-block copolymer conjugates via aqueous RAFT polymerization: targeted delivery of siRNA and subsequent gene suppression. York AW; Zhang Y; Holley AC; Guo Y; Huang F; McCormick CL Biomacromolecules; 2009 Apr; 10(4):936-43. PubMed ID: 19290625 [TBL] [Abstract][Full Text] [Related]
11. PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s - Biocompatible Terpolymers for pDNA Delivery. Cokca C; Hack FJ; Costabel D; Herwig K; Hülsmann J; Then P; Heintzmann R; Fischer D; Peneva K Macromol Biosci; 2021 Oct; 21(10):e2100146. PubMed ID: 34310046 [TBL] [Abstract][Full Text] [Related]
12. Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA-s-APMA) copolymers. York AW; Huang F; McCormick CL Biomacromolecules; 2010 Feb; 11(2):505-14. PubMed ID: 20050670 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Sun TM; Du JZ; Yan LF; Mao HQ; Wang J Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636 [TBL] [Abstract][Full Text] [Related]
14. The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity. Tabujew I; Cokca C; Zartner L; Schubert US; Nischang I; Fischer D; Peneva K J Mater Chem B; 2019 Oct; 7(39):5920-5929. PubMed ID: 31538170 [TBL] [Abstract][Full Text] [Related]
15. The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency. Hinton TM; Guerrero-Sanchez C; Graham JE; Le T; Muir BW; Shi S; Tizard ML; Gunatillake PA; McLean KM; Thang SH Biomaterials; 2012 Oct; 33(30):7631-42. PubMed ID: 22831854 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and in vitro characterization of an ABC triblock copolymer for siRNA delivery. Segura T; Hubbell JA Bioconjug Chem; 2007; 18(3):736-45. PubMed ID: 17358044 [TBL] [Abstract][Full Text] [Related]
17. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery. Sevimli S; Sagnella S; Kavallaris M; Bulmus V; Davis TP Biomacromolecules; 2013 Nov; 14(11):4135-49. PubMed ID: 24125032 [TBL] [Abstract][Full Text] [Related]
18. Galactosylated poly(ethylene glycol) methacrylate-st-3-guanidinopropyl methacrylamide copolymers as siRNA carriers for inhibiting Survivin expression in vitro and in vivo. Wu Y; Qin Z; Ji J; Yang R; Zhang X; Li Y; Yin L; Pu Y; Li X J Drug Target; 2014 May; 22(4):352-64. PubMed ID: 24405019 [TBL] [Abstract][Full Text] [Related]
19. Recent progress in copolymer-mediated siRNA delivery. Wu ZW; Chien CT; Liu CY; Yan JY; Lin SY J Drug Target; 2012 Aug; 20(7):551-60. PubMed ID: 22758393 [TBL] [Abstract][Full Text] [Related]
20. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Mao S; Neu M; Germershaus O; Merkel O; Sitterberg J; Bakowsky U; Kissel T Bioconjug Chem; 2006; 17(5):1209-18. PubMed ID: 16984130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]