BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24700815)

  • 1. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.
    Wang Y; Cutcliffe LT; Skilton RJ; Ramsey KH; Thomson NR; Clarke IN
    Pathog Dis; 2014 Oct; 72(1):19-23. PubMed ID: 24700815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmid-mediated transformation tropism of chlamydial biovars.
    Song L; Carlson JH; Zhou B; Virtaneva K; Whitmire WM; Sturdevant GL; Porcella SF; McClarty G; Caldwell HD
    Pathog Dis; 2014 Mar; 70(2):189-93. PubMed ID: 24214488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.
    O'Connell CM; AbdelRahman YM; Green E; Darville HK; Saira K; Smith B; Darville T; Scurlock AM; Meyer CR; Belland RJ
    Infect Immun; 2011 Mar; 79(3):1044-56. PubMed ID: 21199910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Genetic Transformation of Chlamydia pneumoniae.
    Shima K; Wanker M; Skilton RJ; Cutcliffe LT; Schnee C; Kohl TA; Niemann S; Geijo J; Klinger M; Timms P; Rattei T; Sachse K; Clarke IN; Rupp J
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of a plasmid-free, genital tract isolate of Chlamydia trachomatis with a plasmid vector carrying a deletion in CDS6 revealed that this gene regulates inclusion phenotype.
    Wang Y; Cutcliffe LT; Skilton RJ; Persson K; Bjartling C; Clarke IN
    Pathog Dis; 2013 Mar; 67(2):100-3. PubMed ID: 23620154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Chlamydia trachomatis plasmid-encoded open reading frames.
    Gong S; Yang Z; Lei L; Shen L; Zhong G
    J Bacteriol; 2013 Sep; 195(17):3819-26. PubMed ID: 23794619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic transformation of a clinical (genital tract), plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.
    Wang Y; Kahane S; Cutcliffe LT; Skilton RJ; Lambden PR; Persson K; Bjartling C; Clarke IN
    PLoS One; 2013; 8(3):e59195. PubMed ID: 23527131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum.
    Fields KA; Bodero MD; Scanlon KR; Jewett TJ; Wolf K
    Infect Immun; 2022 Dec; 90(12):e0045322. PubMed ID: 36350146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydial genomic MinD protein does not regulate plasmid-dependent genes like Pgp5.
    Sun Y; Kong J; Ma J; Qi M; Zhang Y; Han L; Liu Q; Liu Y
    Acta Biochim Pol; 2018; 65(3):425-429. PubMed ID: 30212594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection.
    Ramsey KH; Schripsema JH; Smith BJ; Wang Y; Jham BC; O'Hagan KP; Thomson NR; Murthy AK; Skilton RJ; Chu P; Clarke IN
    Infect Immun; 2014 Aug; 82(8):3341-9. PubMed ID: 24866804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.
    Wang Y; Kahane S; Cutcliffe LT; Skilton RJ; Lambden PR; Clarke IN
    PLoS Pathog; 2011 Sep; 7(9):e1002258. PubMed ID: 21966270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of sexually transmitted infection-causing serovars of chlamydia trachomatis using Blasticidin for selection.
    Ding H; Gong S; Tian Y; Yang Z; Brunham R; Zhong G
    PLoS One; 2013; 8(11):e80534. PubMed ID: 24303023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broad-spectrum cloning vector that exists as both an integrated element and a free plasmid in Chlamydia trachomatis.
    Garvin L; Vande Voorde R; Dickinson M; Carrell S; Hybiske K; Rockey D
    PLoS One; 2021; 16(12):e0261088. PubMed ID: 34914750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Chlamydia muridarum reveals a role for Pgp5 in suppression of plasmid-dependent gene expression.
    Liu Y; Chen C; Gong S; Hou S; Qi M; Liu Q; Baseman J; Zhong G
    J Bacteriol; 2014 Mar; 196(5):989-98. PubMed ID: 24363344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloramphenicol acetyltransferase as a selection marker for chlamydial transformation.
    Xu S; Battaglia L; Bao X; Fan H
    BMC Res Notes; 2013 Sep; 6():377. PubMed ID: 24060200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation and Mutagenesis of Chlamydia trachomatis and C. muridarum Utilizing pKW Vector.
    Wolf K
    Curr Protoc; 2023 May; 3(5):e775. PubMed ID: 37204235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum.
    Lei L; Chen J; Hou S; Ding Y; Yang Z; Zeng H; Baseman J; Zhong G
    Infect Immun; 2014 Mar; 82(3):983-92. PubMed ID: 24343644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Transformation of a
    O'Neill CE; Skilton RJ; Pearson SA; Filardo S; Andersson P; Clarke IN
    Front Cell Infect Microbiol; 2018; 8():434. PubMed ID: 30619780
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of Transposon Mutagenesis for Chlamydia muridarum.
    Wang Y; LaBrie SD; Carrell SJ; Suchland RJ; Dimond ZE; Kwong F; Rockey DD; Hefty PS; Hybiske K
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.