BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24700859)

  • 21. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical inhibition of motor nerve and muscle activity in vivo.
    Liske H; Towne C; Anikeeva P; Zhao S; Feng G; Deisseroth K; Delp S
    Muscle Nerve; 2013 Jun; 47(6):916-21. PubMed ID: 23629741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury.
    Thomas CK; Esipenko V; Xu XM; Madsen PW; Gordon T
    Exp Neurol; 1999 Aug; 158(2):279-89. PubMed ID: 10415136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated stimuli for axonal growth causes motoneuron death in adult rats: the effect of botulinum toxin followed by partial denervation.
    White CM; Greensmith L; Vrbová G
    Neuroscience; 2000; 95(4):1101-9. PubMed ID: 10682717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The basis for diminished functional recovery after delayed peripheral nerve repair.
    Gordon T; Tyreman N; Raji MA
    J Neurosci; 2011 Apr; 31(14):5325-34. PubMed ID: 21471367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroscience. Optogenetic regeneration.
    Iyer SM; Delp SL
    Science; 2014 Apr; 344(6179):44-5. PubMed ID: 24700845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy.
    Yohn DC; Miles GB; Rafuse VF; Brownstone RM
    J Neurosci; 2008 Nov; 28(47):12409-18. PubMed ID: 19020033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical Feedback Control and Electrical-Optical Costimulation of Peripheral Nerves.
    Kapur SK; Richner TJ; Brodnick SK; Williams JC; Poore SO
    Plast Reconstr Surg; 2016 Sep; 138(3):451e-460e. PubMed ID: 27556620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity-dependent and -independent synaptic interactions during reinnervation of partially denervated rat muscle.
    Ribchester RR
    J Physiol; 1988 Jul; 401():53-75. PubMed ID: 3171995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of transmitter release at the neuromuscular junction prevents motoneuron death after axotomy in neonatal rats.
    Greensmith L; Dick J; Emanuel AO; Vrbová G
    Neuroscience; 1996 Mar; 71(1):213-20. PubMed ID: 8834403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-reinnervated cat medial gastrocnemius muscles. II. analysis of the mechanisms and significance of fiber type grouping in reinnervated muscles.
    Rafuse VF; Gordon T
    J Neurophysiol; 1996 Jan; 75(1):282-97. PubMed ID: 8822557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord.
    Nógrádi A; Pajer K; Márton G
    Ann Anat; 2011 Jul; 193(4):362-70. PubMed ID: 21600746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transplantation of embryonic motor neurons into peripheral nerve combined with functional electrical stimulation restores functional muscle activity in the rat sciatic nerve transection model.
    Kurimoto S; Kato S; Nakano T; Yamamoto M; Takanobu N; Hirata H
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E477-E484. PubMed ID: 24668934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional motor neurons differentiating from mouse multipotent spinal cord precursor cells in culture and after transplantation into transected sciatic nerve.
    MacDonald SC; Fleetwood IG; Hochman S; Dodd JG; Cheng GK; Jordan LM; Brownstone RM
    J Neurosurg; 2003 May; 98(5):1094-103. PubMed ID: 12744371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The state of the contralateral motor center of the rat gastrocnemius muscle after unilateral damage of sciatic nerve].
    Eremeev AA; Pleshchinskiĭ IN; Baltina TV; Eremeev AM
    Ross Fiziol Zh Im I M Sechenova; 2011 Mar; 97(3):308-15. PubMed ID: 21675206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor nerve transplantation.
    Gray WP; Keohane C; Kirwan WO
    J Neurosurg; 1997 Oct; 87(4):615-24. PubMed ID: 9322851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic regulation of leg movement in midstage chick embryos through peripheral nerve stimulation.
    Sharp AA; Fromherz S
    J Neurophysiol; 2011 Nov; 106(5):2776-82. PubMed ID: 21880945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetic control of targeted peripheral axons in freely moving animals.
    Towne C; Montgomery KL; Iyer SM; Deisseroth K; Delp SL
    PLoS One; 2013; 8(8):e72691. PubMed ID: 23991144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioluminescent Optogenetics: A Novel Experimental Therapy to Promote Axon Regeneration after Peripheral Nerve Injury.
    English AW; Berglund K; Carrasco D; Goebel K; Gross RE; Isaacson R; Mistretta OC; Wynans C
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enlarged motor units resulting from partial denervation of cat hindlimb muscles.
    Luff AR; Hatcher DD; Torkko K
    J Neurophysiol; 1988 May; 59(5):1377-94. PubMed ID: 3385465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.