These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 24700885)
1. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice. Ussher JR; Keung W; Fillmore N; Koves TR; Mori J; Zhang L; Lopaschuk DG; Ilkayeva OR; Wagg CS; Jaswal JS; Muoio DM; Lopaschuk GD J Pharmacol Exp Ther; 2014 Jun; 349(3):487-96. PubMed ID: 24700885 [TBL] [Abstract][Full Text] [Related]
2. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Kantor PF; Lucien A; Kozak R; Lopaschuk GD Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420 [TBL] [Abstract][Full Text] [Related]
3. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Lopaschuk GD; Barr R; Thomas PD; Dyck JR Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392 [TBL] [Abstract][Full Text] [Related]
4. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. MacInnes A; Fairman DA; Binding P; Rhodes Ja; Wyatt MJ; Phelan A; Haddock PS; Karran EH Circ Res; 2003 Aug; 93(3):e26-32. PubMed ID: 12869391 [TBL] [Abstract][Full Text] [Related]
6. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Liu Z; Chen JM; Huang H; Kuznicki M; Zheng S; Sun W; Quan N; Wang L; Yang H; Guo HM; Li J; Zhuang J; Zhu P Metabolism; 2016 Mar; 65(3):122-30. PubMed ID: 26892523 [TBL] [Abstract][Full Text] [Related]
7. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Rupp H; Zarain-Herzberg A; Maisch B Herz; 2002 Nov; 27(7):621-36. PubMed ID: 12439634 [TBL] [Abstract][Full Text] [Related]
8. Human obesity is characterized by defective fat storage and enhanced muscle fatty acid oxidation, and trimetazidine gradually counteracts these abnormalities. Bucci M; Borra R; Någren K; Maggio R; Tuunanen H; Oikonen V; Del Ry S; Viljanen T; Taittonen M; Rigazio S; Giannessi D; Parkkola R; Knuuti J; Nuutila P; Iozzo P Am J Physiol Endocrinol Metab; 2011 Jul; 301(1):E105-12. PubMed ID: 21505146 [TBL] [Abstract][Full Text] [Related]
9. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422 [TBL] [Abstract][Full Text] [Related]
10. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts. Onay-Besikci A; Guner S; Arioglu E; Ozakca I; Ozcelikay AT; Altan VM Can J Physiol Pharmacol; 2007 May; 85(5):527-35. PubMed ID: 17632588 [TBL] [Abstract][Full Text] [Related]
11. Effects of metabolic approach in diabetic patients with coronary artery disease. Fragasso G; Salerno A; Spoladore R; Cera M; Montanaro C; Margonato A Curr Pharm Des; 2009; 15(8):857-62. PubMed ID: 19275650 [TBL] [Abstract][Full Text] [Related]
12. Assessment of anti-ischemic and antianginal effect at trough plasma concentration and safety of trimetazidine MR 35 mg in patients with stable angina pectoris: a multicenter, double-blind, placebo-controlled study. Sellier P; Broustet JP Am J Cardiovasc Drugs; 2003; 3(5):361-9. PubMed ID: 14728070 [TBL] [Abstract][Full Text] [Related]
17. Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. McClellan KJ; Plosker GL Drugs; 1999 Jul; 58(1):143-57. PubMed ID: 10439934 [TBL] [Abstract][Full Text] [Related]
19. BAIBA attenuates insulin resistance and inflammation induced by palmitate or a high fat diet via an AMPK-PPARδ-dependent pathway in mice. Jung TW; Hwang HJ; Hong HC; Yoo HJ; Baik SH; Choi KM Diabetologia; 2015 Sep; 58(9):2096-105. PubMed ID: 26105792 [TBL] [Abstract][Full Text] [Related]
20. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Holloway GP; Chou CJ; Lally J; Stellingwerff T; Maher AC; Gavrilova O; Haluzik M; Alkhateeb H; Reitman ML; Bonen A Diabetologia; 2011 Jun; 54(6):1457-67. PubMed ID: 21442160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]