These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 2470090)
1. Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: definition of the minimal polymerase domain. Prasad VR; Goff SP Proc Natl Acad Sci U S A; 1989 May; 86(9):3104-8. PubMed ID: 2470090 [TBL] [Abstract][Full Text] [Related]
2. Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli. Hizi A; Tal R; Hughes SH Virology; 1991 Jan; 180(1):339-46. PubMed ID: 1701948 [TBL] [Abstract][Full Text] [Related]
3. Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase. Hostomsky Z; Hostomska Z; Hudson GO; Moomaw EW; Nodes BR Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1148-52. PubMed ID: 1705027 [TBL] [Abstract][Full Text] [Related]
4. Engineering of the human-immunodeficiency-virus-type-1 (HIV-1) reverse transcriptase gene to prevent dimerization of the expressed chimaeric protein: purification and characterization of a monomeric HIV-1 reverse transcriptase. Sharma SK; Basu A; Fan N; Evans DB Biotechnol Appl Biochem; 1994 Apr; 19(2):155-67. PubMed ID: 7514879 [TBL] [Abstract][Full Text] [Related]
6. Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. Tisdale M; Schulze T; Larder BA; Moelling K J Gen Virol; 1991 Jan; 72 ( Pt 1)():59-66. PubMed ID: 1703563 [TBL] [Abstract][Full Text] [Related]
7. Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Tanese N; Goff SP Proc Natl Acad Sci U S A; 1988 Mar; 85(6):1777-81. PubMed ID: 2450347 [TBL] [Abstract][Full Text] [Related]
8. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L; Bäckbro K; Unge T; Bhikhabhai R; Vrang L; Zhang H; Orvell C; Strandberg B; Oberg B Virology; 1993 Oct; 196(2):731-8. PubMed ID: 7690504 [TBL] [Abstract][Full Text] [Related]
9. Functional characterization of RNA-dependent DNA polymerase and RNase H activities of a recombinant HIV reverse transcriptase. Tan CK; Zhang J; Li ZY; Tarpley WG; Downey KM; So AG Biochemistry; 1991 Mar; 30(10):2651-5. PubMed ID: 1705816 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of HIV-specific RNase H by monoclonal antibody. Hansen J; Schulze T; Mellert W; Moelling K EMBO J; 1988 Jan; 7(1):239-43. PubMed ID: 2452083 [TBL] [Abstract][Full Text] [Related]
11. Functional analysis of novel selective mutants of the reverse transcriptase of human immunodeficiency virus type 1. Hizi A; Shaharabany M J Biol Chem; 1992 Sep; 267(26):18255-8. PubMed ID: 1382052 [TBL] [Abstract][Full Text] [Related]
12. HIV-1 reverse transcriptase/ribonuclease H: high level expression in Escherichia coli from a plasmid constructed using the polymerase chain reaction. D'Aquila RT; Summers WC J Acquir Immune Defic Syndr (1988); 1989; 2(6):579-87. PubMed ID: 2479733 [TBL] [Abstract][Full Text] [Related]
13. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit. Sevilya Z; Loya S; Adir N; Hizi A Nucleic Acids Res; 2003 Mar; 31(5):1481-7. PubMed ID: 12595556 [TBL] [Abstract][Full Text] [Related]
14. Fidelity of human immunodeficiency virus type I reverse transcriptase in copying natural DNA. Weber J; Grosse F Nucleic Acids Res; 1989 Feb; 17(4):1379-93. PubMed ID: 2466238 [TBL] [Abstract][Full Text] [Related]
15. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Le Grice SF; Grüninger-Leitch F Eur J Biochem; 1990 Jan; 187(2):307-14. PubMed ID: 1688798 [TBL] [Abstract][Full Text] [Related]
16. Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. Schatz O; Cromme FV; Grüninger-Leitch F; Le Grice SF FEBS Lett; 1989 Nov; 257(2):311-4. PubMed ID: 2479577 [TBL] [Abstract][Full Text] [Related]
17. HIV reverse transcriptase structure-function relationships. Jacobo-Molina A; Arnold E Biochemistry; 1991 Jul; 30(26):6351-6. PubMed ID: 1711368 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase. Boyer PL; Ferris AL; Clark P; Whitmer J; Frank P; Tantillo C; Arnold E; Hughes SH J Mol Biol; 1994 Oct; 243(3):472-83. PubMed ID: 7525967 [TBL] [Abstract][Full Text] [Related]
19. Alterations to the primer grip of p66 HIV-1 reverse transcriptase and their consequences for template-primer utilization. Ghosh M; Jacques PS; Rodgers DW; Ottman M; Darlix JL; Le Grice SF Biochemistry; 1996 Jul; 35(26):8553-62. PubMed ID: 8679616 [TBL] [Abstract][Full Text] [Related]
20. The p15 carboxyl-terminal proteolysis product of the human immunodeficiency virus type 1 reverse transcriptase p66 has DNA polymerase activity. Hafkemeyer P; Ferrari E; Brecher J; Hübscher U Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5262-66. PubMed ID: 1711222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]