These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24701031)

  • 1. A microacoustic analysis including viscosity and thermal conductivity to model the effect of the protective cap on the acoustic response of a MEMS microphone.
    Homentcovschi D; Miles RN; Loeppert PV; Zuckerwar AJ
    Microsyst Technol; 2014 Feb; 20(2):265-272. PubMed ID: 24701031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal boundary layer limitations on the performance of micromachined microphones.
    Kuntzman ML; LoPresti JL; Du Y; Conklin WF; Naderyan V; Lee SB; Schafer D; Pedersen M; Loeppert PV
    J Acoust Soc Am; 2018 Nov; 144(5):2838. PubMed ID: 30522283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modeling and Feasibility Study of a Micro-Machined Microphone Based on a Field-Effect Transistor and an Electret for a Low-Frequency Microphone.
    Shin K; Kim C; Sung M; Kim J; Moon W
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic transmission line based modelling of microscaled channels and enclosures.
    Anzinger S; Manz J; Bretthauer C; Krumbein U; Dehé A
    J Acoust Soc Am; 2019 Feb; 145(2):968. PubMed ID: 30823794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea.
    Miles RN; Su Q; Cui W; Shetye M; Degertekin FL; Bicen B; Garcia C; Jones S; Hall N
    J Acoust Soc Am; 2009 Apr; 125(4):2013-26. PubMed ID: 19354377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Optimization of a BAW Microphone Sensor.
    Guo H; Li J; Liu T; Feng M; Gao Y
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microacoustic Metagratings at Ultra-High Frequencies Fabricated by Two-Photon Lithography.
    Melnikov A; Köble S; Schweiger S; Chiang YK; Marburg S; Powell DA
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200990. PubMed ID: 35466579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of microphone acoustic center from sound field projection measured by optical interferometry.
    Hermawanto D; Ishikawa K; Yatabe K; Oikawa Y
    J Acoust Soc Am; 2023 Feb; 153(2):1138. PubMed ID: 36859155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Modeling of a MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications.
    Peña-García NN; Aguilera-Cortés LA; González-Palacios MA; Raskin JP; Herrera-May AL
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Glass Diaphragm Based Fiber-Optic Microphone for Sensitive Detection of Airborne and Waterborne Sounds.
    Wu G; Hu X; Liu X; Dong Z; Yue Y; Cai C; Qi ZM
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic modeling of a three-dimensional rectangular opened enclosure coupled with a semi-infinite exterior field at the baffled opening.
    Jin G; Shi S; Liu Z
    J Acoust Soc Am; 2016 Nov; 140(5):3675. PubMed ID: 27908055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-quality digital radio-frequency capacitor microphone with improved dynamic range.
    Urbansky L; Zölzer U
    J Acoust Soc Am; 2020 Mar; 147(3):1953. PubMed ID: 32237810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations.
    Barrera-Figueroa S; Rasmussen K; Jacobsen F
    J Acoust Soc Am; 2009 Oct; 126(4):1788-95. PubMed ID: 19813793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.
    Pfiffner F; Prochazka L; Peus D; Dobrev I; Dalbert A; Sim JH; Kesterke R; Walraevens J; Harris F; Roosli C; Obrist D; Huber A
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2431-2438. PubMed ID: 28029613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise in miniature microphones.
    Thompson SC; LoPresti JL; Ring EM; Nepomuceno HG; Beard JJ; Ballad WJ; Carlson EV
    J Acoust Soc Am; 2002 Feb; 111(2):861-6. PubMed ID: 11863188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a sub 15-dBA optical micromachined microphone.
    Kim D; Hall NA
    J Acoust Soc Am; 2014 May; 135(5):2664-73. PubMed ID: 24815250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure reciprocity calibration of a MEMS microphone.
    Wagner RP; Fick SE
    J Acoust Soc Am; 2017 Sep; 142(3):EL251. PubMed ID: 28964097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel MEMS Capacitive Microphone with Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions.
    Shubham S; Seo Y; Naderyan V; Song X; Frank AJ; Johnson JTMG; da Silva M; Pedersen M
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEMS piezoelectric resonant microphone array for lung sound classification.
    Liu H; Barekatain M; Roy A; Liu S; Cao Y; Tang Y; Shkel A; Kim ES
    J Micromech Microeng; 2023 Apr; 33(4):044003. PubMed ID: 36911255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.