These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24701135)

  • 1. Emergence of a snake-like structure in mobile distributed agents: an exploratory agent-based modeling approach.
    Niazi MA
    ScientificWorldJournal; 2014; 2014():140309. PubMed ID: 24701135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.
    Laghari S; Niazi MA
    PLoS One; 2016; 11(1):e0146760. PubMed ID: 26812235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animats: computer-simulated animals in behavioral research.
    Watts JM
    J Anim Sci; 1998 Oct; 76(10):2596-604. PubMed ID: 9814899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake.
    Luo M; Wan Z; Sun Y; Skorina EH; Tao W; Chen F; Gopalka L; Yang H; Onal CD
    Front Robot AI; 2020; 7():599242. PubMed ID: 33501359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes.
    Kano T; Ishiguro A
    Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially adaptive active contours: a semi-automatic tumor segmentation framework.
    Farmaki C; Marias K; Sakkalis V; Graf N
    Int J Comput Assist Radiol Surg; 2010 Jul; 5(4):369-84. PubMed ID: 20473782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic coordination between robots: self-organized timing selection in a juggling-like ball-passing task.
    Hirai H; Miyazaki F
    IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):738-54. PubMed ID: 16903361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biomimetic Method to Replicate the Natural Fluid Movements of Swimming Snakes to Design Aquatic Robots.
    Gautreau E; Bonnet X; Sandoval J; Fosseries G; Herrel A; Arsicault M; Zeghloul S; Laribi MA
    Biomimetics (Basel); 2022 Dec; 7(4):. PubMed ID: 36546923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolvable social agents for bacterial systems modeling.
    Paton R; Gregory R; Vlachos C; Saunders J; Wu H
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):208-16. PubMed ID: 15473073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.