These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24701176)

  • 1. Spectral pattern classification in lidar data for rock identification in outcrops.
    Campos Inocencio L; Veronez MR; Wohnrath Tognoli FM; de Souza MK; da Silva RM; Gonzaga L; Blum Silveira CL
    ScientificWorldJournal; 2014; 2014():539029. PubMed ID: 24701176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Different Remote Sensing Methods for 3D Modeling of Small Rock Outcrops.
    Mikita T; Balková M; Bajer A; Cibulka M; Patočka Z
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32192071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for extraction of airborne LiDAR point cloud buildings based on segmentation.
    Liu M; Shao Y; Li R; Wang Y; Sun X; Wang J; You Y
    PLoS One; 2020; 15(5):e0232778. PubMed ID: 32469887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic application of digital outcrop characterization techniques and deep learning algorithms in geological exploration.
    Dong Z; Tang P; Chen G; Yin S
    Sci Rep; 2024 Oct; 14(1):22948. PubMed ID: 39363057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.
    Rosnell T; Honkavaara E
    Sensors (Basel); 2012; 12(1):453-80. PubMed ID: 22368479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Changes in Oil Palm Canopy Architecture From Basal Stem Rot Using Terrestrial Laser Scanner.
    Azuan NH; Khairunniza-Bejo S; Abdullah AF; Kassim MSM; Ahmad D
    Plant Dis; 2019 Dec; 103(12):3218-3225. PubMed ID: 31596688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.
    Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D
    Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of characteristics of micro-bubble clouds on backscatter lidar signal.
    Li W; Yang K; Xia M; Rao J; Zhang W
    Opt Express; 2009 Sep; 17(20):17772-83. PubMed ID: 19907564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Ground-Based LiDAR for Analysing Oil Palm Canopy Properties on the Occurrence of Basal Stem Rot (BSR) Disease.
    Husin NA; Khairunniza-Bejo S; Abdullah AF; Kassim MSM; Ahmad D; Azmi ANN
    Sci Rep; 2020 Apr; 10(1):6464. PubMed ID: 32296108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment.
    Locosselli GM; Cardim RH; Ceccantini G
    Int J Biometeorol; 2016 May; 60(5):639-49. PubMed ID: 26362853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping.
    Palombi L; Alderighi D; Cecchi G; Raimondi V; Toci G; Lognoli D
    Opt Express; 2013 Jun; 21(12):14736-46. PubMed ID: 23787661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods.
    Obanawa H; Yoshitoshi R; Watanabe N; Sakanoue S
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for detecting individual trees in aerial LiDAR point clouds using absolute height maxima.
    Khorrami R; Naeimi Z; Tabari M; Eslahchi MR
    Environ Monit Assess; 2018 Nov; 190(12):708. PubMed ID: 30413891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements.
    Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J
    Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Rock Outcrops Reveal Continuing Habitat Disturbance for an Endangered Australian Snake.
    Goldingay RL; Newell DA
    Conserv Biol; 2000 Dec; 14(6):1908-1912. PubMed ID: 35701925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel application of terrestrial LIDAR to characterize elevation change at human grave surfaces in support of narrowing down possible unmarked grave locations.
    Corcoran KA; Mundorff AZ; White DA; Emch WL
    Forensic Sci Int; 2018 Aug; 289():320-328. PubMed ID: 29933204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of airborne 3D point clouds regarding separation of vegetation in complex environments.
    Bulatov D; Stütz D; Hacker J; Weinmann M
    Appl Opt; 2021 Aug; 60(22):F6-F20. PubMed ID: 34612858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PypeTree: a tool for reconstructing tree perennial tissues from point clouds.
    Delagrange S; Jauvin C; Rochon P
    Sensors (Basel); 2014 Mar; 14(3):4271-89. PubMed ID: 24599190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.
    Yan L; Tan J; Liu H; Xie H; Chen C
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28850100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.