These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24701686)

  • 1. Combined analysis of modeled and monitored SO2 concentrations at a complex smelting facility.
    Rehbein PJ; Kennedy MG; Cotsman DJ; Campeau MA; Greenfield MM; Annett MA; Lepage MF
    J Air Waste Manag Assoc; 2014 Mar; 64(3):272-9. PubMed ID: 24701686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of low wind modeling approaches for two tall-stack databases.
    Paine R; Samani O; Kaplan M; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emissions variability processor (EMVAP): design, evaluation, and application.
    Paine R; Szembek C; Heinold D; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2014 Dec; 64(12):1390-402. PubMed ID: 25562935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring SO
    Gwimbi P
    Int J Equity Health; 2017 Nov; 16(1):200. PubMed ID: 29145849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating environmental exposures to sulfur dioxide from multiple industrial sources for a case-control study.
    Rogers JF; Killough GG; Thompson SJ; Addy CL; McKeown RE; Cowen DJ
    J Expo Anal Environ Epidemiol; 1999; 9(6):535-45. PubMed ID: 10638839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRCI ambient NO
    Panek JA; McCarthy JM; Huth AZ; Krol AJ; Nowak C
    J Air Waste Manag Assoc; 2020 May; 70(5):504-521. PubMed ID: 32186474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of air pollutant concentrations in an industrial region of Turkey.
    Tuygun GT; Altuğ H; Elbir T; Gaga EE
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8230-8241. PubMed ID: 28160171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AERMOD performance evaluation for three coal-fired electrical generating units in Southwest Indiana.
    Frost KD
    J Air Waste Manag Assoc; 2014 Mar; 64(3):280-90. PubMed ID: 24701687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk of asthmatic episodes in children exposed to sulfur dioxide stack emissions from a refinery point source in Montreal, Canada.
    Smargiassi A; Kosatsky T; Hicks J; Plante C; Armstrong B; Villeneuve PJ; Goudreau S
    Environ Health Perspect; 2009 Apr; 117(4):653-9. PubMed ID: 19440507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NO
    Chusai C; Manomaiphiboon K; Saiyasitpanich P; Thepanondh S
    J Air Waste Manag Assoc; 2012 Aug; 62(8):932-45. PubMed ID: 22916441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo method for summing modeled and background pollutant concentrations.
    Dhammapala R; Bowman C; Schulte J
    J Air Waste Manag Assoc; 2017 Aug; 67(8):836-846. PubMed ID: 28278032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the SO2 and NOx offset ratio method to account for secondary PM2.5 formation.
    Guerra SA; Olsen SR; Anderson JJ
    J Air Waste Manag Assoc; 2014 Mar; 64(3):265-71. PubMed ID: 24701685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery.
    Atabi F; Jafarigol F; Moattar F; Nouri J
    Environ Monit Assess; 2016 Sep; 188(9):516. PubMed ID: 27521001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assimilative capacity-based emission load management in a critically polluted industrial cluster.
    Panda S; Nagendra SMS
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1353-1363. PubMed ID: 28945513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion of SO
    Eslami Doost Z; Dehghani S; Samaei MR; Arabzadeh M; Baghapour MA; Hashemi H; Oskoei V; Mohammadpour A; De Marcoc A
    Int J Environ Health Res; 2024 Feb; 34(2):1227-1240. PubMed ID: 36682061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of hourly with annual air pollutant emissions: Implications for estimating acute exposure and public health risk.
    Stewart MJ; Hirtz J; Woodall GM; Weitekamp CA; Spence K
    J Air Waste Manag Assoc; 2019 Jul; 69(7):848-856. PubMed ID: 30870104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO
    Yang X; Wang S; Zhang W; Zhan D; Li J
    Sci Total Environ; 2017 Apr; 584-585():318-328. PubMed ID: 28040215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from a beef cattle feedlot.
    Bonifacio HF; Maghirang RG; Razote EB; Trabue SL; Prueger JH
    J Air Waste Manag Assoc; 2013 May; 63(5):545-56. PubMed ID: 23786146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.