These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 24701915)
1. The influence zone of surfactant-enhanced air sparging in different media. Chuan-Yu Q; Yong-Sheng Z; Wei Z Environ Technol; 2014; 35(9-12):1190-8. PubMed ID: 24701915 [TBL] [Abstract][Full Text] [Related]
2. Surfactant-enhanced air sparging in saturated sand. Kim H; Soh HE; Annable MD; Kim DJ Environ Sci Technol; 2004 Feb; 38(4):1170-5. PubMed ID: 14998033 [TBL] [Abstract][Full Text] [Related]
3. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand. Kim H; Choi KM; Moon JW; Annable MD J Contam Hydrol; 2006 Nov; 88(1-2):23-35. PubMed ID: 16872716 [TBL] [Abstract][Full Text] [Related]
4. Study on the effects of alcohol-enhanced air sparging remediation in a benzene-contaminated aquifer: a new insight. Chang Y; Yao M; Bai J; Zhao Y Environ Sci Pollut Res Int; 2019 Dec; 26(34):35140-35150. PubMed ID: 31686334 [TBL] [Abstract][Full Text] [Related]
5. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging. Choi JK; Kim H; Kwon H; Annable MD J Contam Hydrol; 2018 Mar; 210():42-49. PubMed ID: 29502850 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of surfactant-enhanced air sparging in different media. Qin CY; Zhao YS; Li LL; Zheng W J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1047-55. PubMed ID: 23573925 [TBL] [Abstract][Full Text] [Related]
7. Surfactant-enhanced ozone sparging for removal of organic compounds from sand. Kim H; Yang S; Yang H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):526-33. PubMed ID: 23383638 [TBL] [Abstract][Full Text] [Related]
8. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments. Kim J; Kim H; Annable MD J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638 [TBL] [Abstract][Full Text] [Related]
9. Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging. Kim H; Annable MD J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(12):2799-811. PubMed ID: 17114108 [TBL] [Abstract][Full Text] [Related]
10. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments. Kim H; Ahn D; Annable MD J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745 [TBL] [Abstract][Full Text] [Related]
11. Study on mechanisms and effect of surfactant-enhanced air sparging. Zheng W; Zhao YS; Qin CY; Wang B; Qu ZH Water Environ Res; 2010 Nov; 82(11):2258-64. PubMed ID: 21141387 [TBL] [Abstract][Full Text] [Related]
12. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source. Cho MY; Oh MS; Annable MD; Kim H J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442 [TBL] [Abstract][Full Text] [Related]
13. Effects of airflow rate distribution and nitrobenzene removal in an aquifer with a low-permeability lens during surfactant-enhanced air sparging. Yao M; Yuan Q; Qu D; Liu W; Zhao Y; Wang M J Hazard Mater; 2022 Sep; 437():129383. PubMed ID: 35728315 [TBL] [Abstract][Full Text] [Related]
14. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction. Qin CY; Zhao YS; Su Y; Zheng W Water Environ Res; 2013 Feb; 85(2):133-40. PubMed ID: 23472329 [TBL] [Abstract][Full Text] [Related]
15. Laboratory evaluation of surfactant-enhanced air sparging for perchloroethene source mass depletion from sand. Kim H; Annable MD; Rao PS; Cho J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):406-13. PubMed ID: 19184708 [TBL] [Abstract][Full Text] [Related]
16. Centrifugal study of zone of influence during air-sparging. Hu L; Meegoda JN; Du J; Gao S; Wu X J Environ Monit; 2011 Sep; 13(9):2443-9. PubMed ID: 21755071 [TBL] [Abstract][Full Text] [Related]
17. Effects of different permeable lenses on nitrobenzene transport during air sparging remediation in heterogeneous porous media. Yao M; Bai J; Yang X; Li X; Chang Y; Zhao Y Chemosphere; 2022 Jun; 296():134015. PubMed ID: 35182528 [TBL] [Abstract][Full Text] [Related]
18. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction. Lee JH; Woo HJ; Jeong KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720 [TBL] [Abstract][Full Text] [Related]
19. Physical modeling of air flow during air sparging remediation. Hu L; Wu X; Liu Y; Meegoda JN; Gao S Environ Sci Technol; 2010 May; 44(10):3883-8. PubMed ID: 20426462 [TBL] [Abstract][Full Text] [Related]
20. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging. Schubert M; Schmidt A; Müller K; Weiss H J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]