These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24701940)

  • 1. Assessment of a dielectric barrier discharge plasma reactor at atmospheric pressure for the removal of bisphenol A and tributyltin.
    Hijosa-Valsero M; Molina R; Bayona JM
    Environ Technol; 2014; 35(9-12):1418-26. PubMed ID: 24701940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma.
    Hijosa-Valsero M; Molina R; Schikora H; Müller M; Bayona JM
    J Hazard Mater; 2013 Nov; 262():664-73. PubMed ID: 24121639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of cyanide from water by means of plasma discharge technology.
    Hijosa-Valsero M; Molina R; Schikora H; Müller M; Bayona JM
    Water Res; 2013 Mar; 47(4):1701-7. PubMed ID: 23332789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review.
    Bhatnagar A; Anastopoulos I
    Chemosphere; 2017 Feb; 168():885-902. PubMed ID: 27839878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al).
    Zhou M; Wu YN; Qiao J; Zhang J; McDonald A; Li G; Li F
    J Colloid Interface Sci; 2013 Sep; 405():157-63. PubMed ID: 23764233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced removal of bisphenol-AF onto chitosan-modified zeolite by sodium cholate in aqueous solutions.
    Peng S; Hao K; Han F; Tang Z; Niu B; Zhang X; Wang Z; Hong S
    Carbohydr Polym; 2015 Oct; 130():364-71. PubMed ID: 26076637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: Effects of plasma-working gases, degradation pathways and toxicity assessment.
    Zhang H; Zhang Q; Miao C; Huang Q
    Chemosphere; 2018 Aug; 204():351-358. PubMed ID: 29674147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.
    Kimura Y; Takahashi A; Kashiwada A; Yamada K
    Environ Technol; 2015; 36(18):2265-77. PubMed ID: 25846630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption.
    Zhang Y; Cheng Y; Chen N; Zhou Y; Li B; Gu W; Shi X; Xian Y
    J Colloid Interface Sci; 2014 May; 421():85-92. PubMed ID: 24594036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced removal of aqueous BPA model compounds using Metalloligs.
    Franz DM; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):307-12. PubMed ID: 24279622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.
    Li H; Zhao H; Liu C; Li Y; Cao H; Zhang Y
    Chemosphere; 2013 Aug; 92(10):1294-300. PubMed ID: 23732003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Bisphenol A and Its Potential Substitutes by Biodegradation.
    Frankowski R; Zgoła-Grześkowiak A; Smułek W; Grześkowiak T
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1100-1110. PubMed ID: 31960364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter.
    Park HS; Koduru JR; Choo KH; Lee B
    J Hazard Mater; 2015 Apr; 286():315-24. PubMed ID: 25594935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor.
    Mita L; Grumiro L; Rossi S; Bianco C; Defez R; Gallo P; Mita DG; Diano N
    J Hazard Mater; 2015 Jun; 291():129-35. PubMed ID: 25781217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Removal of bisphenol A in aqueous solutions by core-shell magnetic molecularly imprinted polymers].
    Liu JM; Li HH; Xiong ZH
    Huan Jing Ke Xue; 2013 Jun; 34(6):2240-8. PubMed ID: 23947039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Performance of solar/S-doped TiO2 on the decomposition of bisphenol A].
    Liu C; Chen W; Tao H; Lin T
    Huan Jing Ke Xue; 2009 Jun; 30(6):1653-7. PubMed ID: 19662846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of bisphenol A with diverse microorganisms from river sediment.
    Peng YH; Chen YJ; Chang YJ; Shih YH
    J Hazard Mater; 2015 Apr; 286():285-90. PubMed ID: 25590822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotic and abiotic bisphenol-A removal from wastewater by activated sludge: effects of temperature, biomass, and bisphenol-A concentrations.
    Keskinkan O; Balci B
    Water Sci Technol; 2016; 73(2):317-28. PubMed ID: 26819387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient degradation of Bisphenol A by dielectric barrier discharge non-thermal plasma: Performance, degradation pathways and mechanistic consideration.
    Yang J; Zeng D; Hassan M; Ma Z; Dong L; Xie Y; He Y
    Chemosphere; 2022 Jan; 286(Pt 1):131627. PubMed ID: 34311400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of micropollutants in secondary wastewater effluent using nonthermal plasma-based AOPs: The roles of free radicals and molecular oxidants.
    Chen C; Ma C; Yang Y; Yang X; Demeestere K; Nikiforov A; Van Hulle S
    Water Res; 2023 May; 235():119881. PubMed ID: 36963308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.