BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24701942)

  • 1. Adsorption of azo dyes using peanut hull and orange peel: a comparative study.
    do Nascimento GE; Duarte MM; Campos NF; da Rocha OR; da Silva VL
    Environ Technol; 2014; 35(9-12):1436-53. PubMed ID: 24701942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents.
    Liang S; Guo X; Feng N; Tian Q
    J Hazard Mater; 2010 Feb; 174(1-3):756-62. PubMed ID: 19853995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of cationic dyes from aqueous solution by adsorption on peanut hull.
    Gong R; Li M; Yang C; Sun Y; Chen J
    J Hazard Mater; 2005 May; 121(1-3):247-50. PubMed ID: 15885428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes.
    Singh V; Sharma AK; Tripathi DN; Sanghi R
    J Hazard Mater; 2009 Jan; 161(2-3):955-66. PubMed ID: 18547715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies.
    Khaled A; El Nemr A; El-Sikaily A; Abdelwahab O
    J Hazard Mater; 2009 Jun; 165(1-3):100-10. PubMed ID: 19013711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions.
    Liang S; Guo X; Feng N; Tian Q
    J Hazard Mater; 2009 Oct; 170(1):425-9. PubMed ID: 19473765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions.
    Rosa S; Laranjeira MC; Riela HG; Fávere VT
    J Hazard Mater; 2008 Jun; 155(1-2):253-60. PubMed ID: 18180101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel.
    Nemr AE; Abdelwahab O; El-Sikaily A; Khaled A
    J Hazard Mater; 2009 Jan; 161(1):102-10. PubMed ID: 18455301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between Brazilian agro-wastes and activated carbon as adsorbents to remove Ni(II) from aqueous solutions.
    Dotto GL; Meili L; de Souza Abud AK; Tanabe EH; Bertuol DA; Foletto EL
    Water Sci Technol; 2016; 73(11):2713-21. PubMed ID: 27232408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel.
    Liang S; Guo X; Feng N; Tian Q
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):10-4. PubMed ID: 19477102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.
    Sonai GG; de Souza SM; de Oliveira D; de Souza AA
    J Environ Manage; 2016 Mar; 168():149-56. PubMed ID: 26706227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of porous chitosan-polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye.
    Kannusamy P; Sivalingam T
    Colloids Surf B Biointerfaces; 2013 Aug; 108():229-38. PubMed ID: 23563288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics.
    Amin NK
    J Hazard Mater; 2009 Jun; 165(1-3):52-62. PubMed ID: 18986765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies.
    Calvete T; Lima EC; Cardoso NF; Vaghetti JC; Dias SL; Pavan FA
    J Environ Manage; 2010 Aug; 91(8):1695-706. PubMed ID: 20398999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite.
    Ozcan A; Ozcan AS
    J Hazard Mater; 2005 Oct; 125(1-3):252-9. PubMed ID: 16019142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder.
    Jorfi S; Darvishi Cheshmeh Soltani R; Ahmadi M; Khataee A; Safari M
    J Environ Manage; 2017 Feb; 187():111-121. PubMed ID: 27888712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic powder MnO-Fe2O3 composite--a novel material for the removal of azo-dye from water.
    Wu R; Qu J; Chen Y
    Water Res; 2005 Feb; 39(4):630-8. PubMed ID: 15707636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper biosorption from aqueous solutions by sour orange residue.
    Khormaei M; Nasernejad B; Edrisi M; Eslamzadeh T
    J Hazard Mater; 2007 Oct; 149(2):269-74. PubMed ID: 17493747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption properties of aluminum magnesium mixed hydroxide for the model anionic dye Reactive Brilliant Red K-2BP.
    Li Y; Gao B; Wu T; Wang B; Li X
    J Hazard Mater; 2009 May; 164(2-3):1098-104. PubMed ID: 18930592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles.
    Moussavi G; Mahmoudi M
    J Hazard Mater; 2009 Sep; 168(2-3):806-12. PubMed ID: 19303210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.