These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 24701959)
21. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler. Harper M; Pacolay B; Hintz P; Andrew ME J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423 [TBL] [Abstract][Full Text] [Related]
22. Benchtop x-ray fluorescence to quantify elemental content in nails non-destructively. Specht AJ; Adesina KE; Read DE; Weisskopf MG Sci Total Environ; 2024 Mar; 918():170601. PubMed ID: 38309346 [TBL] [Abstract][Full Text] [Related]
23. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Yantasee W; Hongsirikarn K; Warner CL; Choi D; Sangvanich T; Toloczko MB; Warner MG; Fryxell GE; Addleman RS; Timchalk C Analyst; 2008 Mar; 133(3):348-55. PubMed ID: 18299749 [TBL] [Abstract][Full Text] [Related]
24. Multi-elemental EDXRF mapping of polluted soil from former horticultural land. Jørgensen N; Laursen J; Viksna A; Pind N; Holm PE Environ Int; 2005 Jan; 31(1):43-52. PubMed ID: 15607778 [TBL] [Abstract][Full Text] [Related]
25. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt. Yan Z; XinLei Z; WenBao J; Qing S; YongSheng L; DaQian H; Da C Appl Spectrosc; 2016 Feb; 70(2):272-8. PubMed ID: 26787706 [TBL] [Abstract][Full Text] [Related]
26. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Kamilari E; Farsalinos K; Poulas K; Kontoyannis CG; Orkoula MG Food Chem Toxicol; 2018 Jun; 116(Pt B):233-237. PubMed ID: 29679608 [TBL] [Abstract][Full Text] [Related]
27. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331 [TBL] [Abstract][Full Text] [Related]
28. Validation of x-ray fluorescence measurements of metals in toenail clippings against inductively coupled plasma mass spectrometry in a Nigerian population. Specht AJ; Kponee K; Nkpaa KW; Balcom PH; Weuve J; Nie LH; Weisskopf MG Physiol Meas; 2018 Aug; 39(8):085007. PubMed ID: 30091720 [TBL] [Abstract][Full Text] [Related]
29. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions. Harper M; Pacolay B; Hintz P; Bartley DL; Slaven JE; Andrew ME J Environ Monit; 2007 Nov; 9(11):1263-70. PubMed ID: 17968454 [TBL] [Abstract][Full Text] [Related]
31. Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity. Zhang Z; Wang Z; Li Q; Zou H; Shi Y Talanta; 2014 Feb; 119():613-9. PubMed ID: 24401463 [TBL] [Abstract][Full Text] [Related]
32. [SR-XRF analysis of characteristics of heavy element concentration in qingdao algae and application to monitoring oceanic pollution]. Kang SX; Shen XS; Huang YY; Ju X; Wu ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Feb; 23(1):94-7. PubMed ID: 12939980 [TBL] [Abstract][Full Text] [Related]
33. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF). Jaswal BB; Kumar V; Sharma J; Rai PK; Gondal MA; Gondal B; Singh VK Lasers Med Sci; 2016 Apr; 31(3):573-9. PubMed ID: 26886588 [TBL] [Abstract][Full Text] [Related]
34. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples. Lawryk NJ; Feng HA; Chen BT J Occup Environ Hyg; 2009 Jul; 6(7):433-45. PubMed ID: 19387888 [TBL] [Abstract][Full Text] [Related]
35. Determination of trace elements in soybean by X-ray fluorescence analysis and its application to identification of their production areas. Otaka A; Hokura A; Nakai I Food Chem; 2014 Mar; 147():318-26. PubMed ID: 24206725 [TBL] [Abstract][Full Text] [Related]
36. Rapid screening and quantification of heavy metals in traditional Chinese herbal medicines using monochromatic excitation energy dispersive X-ray fluorescence spectrometry. Ma X; Hua MZ; Ji C; Zhang J; Shi R; Xiao Y; Liu X; He X; Zheng W; Lu X Analyst; 2022 Aug; 147(16):3628-3633. PubMed ID: 35880697 [TBL] [Abstract][Full Text] [Related]
37. In situ elemental characterisation of marine microplastics by portable XRF. Turner A Mar Pollut Bull; 2017 Nov; 124(1):286-291. PubMed ID: 28779888 [TBL] [Abstract][Full Text] [Related]
38. Interference-free determination of ischemia-modified albumin using quantum dot coupled X-ray fluorescence spectroscopy. Luo Y; Wang C; Jiang T; Zhang B; Huang J; Liao P; Fu W Biosens Bioelectron; 2014 Jan; 51():136-42. PubMed ID: 23948244 [TBL] [Abstract][Full Text] [Related]
39. Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils. Vanhoof C; Corthouts V; Tirez K J Environ Monit; 2004 Apr; 6(4):344-50. PubMed ID: 15054544 [TBL] [Abstract][Full Text] [Related]
40. Estimation of trace metal elements in oral mucosa specimens by using SR-XRF, PIXE, and XAFS. Sugiyama T; Uo M; Wada T; Omagari D; Komiyama K; Noguchi T; Jinbu Y; Kusama M Biometals; 2015 Feb; 28(1):11-20. PubMed ID: 25522792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]