These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 24702125)

  • 21. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
    Ren X; Zou L; Zhang X; Branco V; Wang J; Carvalho C; Holmgren A; Lu J
    Antioxid Redox Signal; 2017 Nov; 27(13):989-1010. PubMed ID: 28443683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competing trends of ROS and RNS-mediated protein modifications during hypoxia as an alternate mechanism of NO benefits.
    Gangwar A; Paul S; Ahmad Y; Bhargava K
    Biochimie; 2018 May; 148():127-138. PubMed ID: 29571702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-Nitrosylation of cardiac ion channels.
    Gonzalez DR; Treuer A; Sun QA; Stamler JS; Hare JM
    J Cardiovasc Pharmacol; 2009 Sep; 54(3):188-95. PubMed ID: 19687749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of cardiovascular cellular processes by S-nitrosylation.
    Schulman IH; Hare JM
    Biochim Biophys Acta; 2012 Jun; 1820(6):752-62. PubMed ID: 21536106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of ion channel structure and function by reactive oxygen-nitrogen species.
    Matalon S; Hardiman KM; Jain L; Eaton DC; Kotlikoff M; Eu JP; Sun J; Meissner G; Stamler JS
    Am J Physiol Lung Cell Mol Physiol; 2003 Dec; 285(6):L1184-9. PubMed ID: 14604848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiol-based posttranslational modifications in parasites.
    Jortzik E; Wang L; Becker K
    Antioxid Redox Signal; 2012 Aug; 17(4):657-73. PubMed ID: 22085115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thioredoxin-1 and posttranslational modifications.
    Haendeler J
    Antioxid Redox Signal; 2006; 8(9-10):1723-8. PubMed ID: 16987024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins.
    Haendeler J; Hoffmann J; Zeiher AM; Dimmeler S
    Circulation; 2004 Aug; 110(7):856-61. PubMed ID: 15289372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions.
    Eu JP; Sun J; Xu L; Stamler JS; Meissner G
    Cell; 2000 Aug; 102(4):499-509. PubMed ID: 10966111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox- and calmodulin-dependent S-nitrosylation of the KCNQ1 channel.
    Asada K; Kurokawa J; Furukawa T
    J Biol Chem; 2009 Feb; 284(9):6014-20. PubMed ID: 19124472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overview of protein glutathionylation.
    Filipovska A; Murphy MP
    Curr Protoc Toxicol; 2006 Jun; Chapter 6():Unit6.10. PubMed ID: 23045136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathionylation of mitochondrial proteins.
    Hurd TR; Costa NJ; Dahm CC; Beer SM; Brown SE; Filipovska A; Murphy MP
    Antioxid Redox Signal; 2005; 7(7-8):999-1010. PubMed ID: 15998254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classes of thiols that influence the activity of the skeletal muscle calcium release channel.
    Sun J; Xu L; Eu JP; Stamler JS; Meissner G
    J Biol Chem; 2001 May; 276(19):15625-30. PubMed ID: 11278999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function.
    Chen CA; Wang TY; Varadharaj S; Reyes LA; Hemann C; Talukder MA; Chen YR; Druhan LJ; Zweier JL
    Nature; 2010 Dec; 468(7327):1115-8. PubMed ID: 21179168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of ion channels by hydrogen sulfide.
    Peers C; Bauer CC; Boyle JP; Scragg JL; Dallas ML
    Antioxid Redox Signal; 2012 Jul; 17(1):95-105. PubMed ID: 22074224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial Ca
    Dong Z; Shanmughapriya S; Tomar D; Siddiqui N; Lynch S; Nemani N; Breves SL; Zhang X; Tripathi A; Palaniappan P; Riitano MF; Worth AM; Seelam A; Carvalho E; Subbiah R; JaƱa F; Soboloff J; Peng Y; Cheung JY; Joseph SK; Caplan J; Rajan S; Stathopulos PB; Madesh M
    Mol Cell; 2017 Mar; 65(6):1014-1028.e7. PubMed ID: 28262504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation.
    Yang Y; Shi W; Chen X; Cui N; Konduru AS; Shi Y; Trower TC; Zhang S; Jiang C
    J Biol Chem; 2011 Mar; 286(11):9298-307. PubMed ID: 21216949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of ion channels in the aging nervous system.
    Patel R; Sesti F
    Brain Res; 2016 May; 1639():174-85. PubMed ID: 26947620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.