These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24702413)

  • 21. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.
    Uda T; Yoshida M; Ishii A; Kato YK
    Nano Lett; 2016 Apr; 16(4):2278-82. PubMed ID: 26999284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy.
    Matsunaga R; Matsuda K; Kanemitsu Y
    Phys Rev Lett; 2011 Jan; 106(3):037404. PubMed ID: 21405298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces.
    Bindl DJ; Safron NS; Arnold MS
    ACS Nano; 2010 Oct; 4(10):5657-64. PubMed ID: 20923182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes.
    Sarpkaya I; Zhang Z; Walden-Newman W; Wang X; Hone J; Wong CW; Strauf S
    Nat Commun; 2013; 4():2152. PubMed ID: 23845935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton resonances quench the photoluminescence of zigzag carbon nanotubes.
    Reich S; Thomsen C; Robertson J
    Phys Rev Lett; 2005 Aug; 95(7):077402. PubMed ID: 16196822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes.
    Georgi C; Hartmann N; Gokus T; Green AA; Hersam MC; Hartschuh A
    Chemphyschem; 2008 Jul; 9(10):1460-4. PubMed ID: 18506857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of a reaction-diffusion crossover in exciton-exciton recombination inside carbon nanotubes using femtosecond optical absorption.
    Allam J; Sajjad MT; Sutton R; Litvinenko K; Wang Z; Siddique S; Yang QH; Loh WH; Brown T
    Phys Rev Lett; 2013 Nov; 111(19):197401. PubMed ID: 24266488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gate-controlled generation of optical pulse trains using individual carbon nanotubes.
    Jiang M; Kumamoto Y; Ishii A; Yoshida M; Shimada T; Kato YK
    Nat Commun; 2015 Feb; 6():6335. PubMed ID: 25721203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy.
    Hirori H; Matsuda K; Miyauchi Y; Maruyama S; Kanemitsu Y
    Phys Rev Lett; 2006 Dec; 97(25):257401. PubMed ID: 17280391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation.
    Sun J; Yu W; Usman A; Isimjan TT; DGobbo S; Alarousu E; Takanabe K; Mohammed OF
    J Phys Chem Lett; 2014 Feb; 5(4):659-65. PubMed ID: 26270833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the exciton binding energy in single-walled carbon nanotubes.
    Wang Z; Pedrosa H; Krauss T; Rothberg L
    Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes.
    Blancon JC; Paillet M; Tran HN; Than XT; Guebrou SA; Ayari A; San Miguel A; Phan NM; Zahab AA; Sauvajol JL; Del Fatti N; Vallée F
    Nat Commun; 2013; 4():2542. PubMed ID: 24071824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metrological Investigation of the (6,5) Carbon Nanotube Absorption Cross Section.
    Oudjedi L; Parra-Vasquez AN; Godin AG; Cognet L; Lounis B
    J Phys Chem Lett; 2013 May; 4(9):1460-4. PubMed ID: 26282299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast exciton energy transfer between nanoscale coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes.
    Koyama T; Asada Y; Hikosaka N; Miyata Y; Shinohara H; Nakamura A
    ACS Nano; 2011 Jul; 5(7):5881-7. PubMed ID: 21682277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of exciton-phonon sideband in individual metallic single-walled carbon nanotubes.
    Zeng H; Zhao H; Zhang FC; Cui X
    Phys Rev Lett; 2009 Apr; 102(13):136406. PubMed ID: 19392381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of exciton-electron scattering in doped single-walled carbon nanotubes.
    Konabe S; Matsuda K; Okada S
    Phys Rev Lett; 2012 Nov; 109(18):187403. PubMed ID: 23215327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.