BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 24702421)

  • 1. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement.
    Zöttl A; Stark H
    Phys Rev Lett; 2014 Mar; 112(11):118101. PubMed ID: 24702421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic interaction of microswimmers near a wall.
    Li GJ; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase separation and coexistence of hydrodynamically interacting microswimmers.
    Blaschke J; Maurer M; Menon K; Zöttl A; Stark H
    Soft Matter; 2016 Dec; 12(48):9821-9831. PubMed ID: 27869284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gyrotactic cluster formation of bottom-heavy squirmers.
    Rühle F; Zantop AW; Stark H
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent collective dynamics of bottom-heavy squirmers under gravity.
    Rühle F; Stark H
    Eur Phys J E Soft Matter; 2020 May; 43(5):26. PubMed ID: 32445113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alignment and propulsion of squirmer pusher-puller dumbbells.
    Clopés J; Gompper G; Winkler RG
    J Chem Phys; 2022 May; 156(19):194901. PubMed ID: 35597650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective sedimentation of squirmers under gravity.
    Kuhr JT; Blaschke J; Rühle F; Stark H
    Soft Matter; 2017 Oct; 13(41):7548-7555. PubMed ID: 28967939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating squirmers with multiparticle collision dynamics.
    Zöttl A; Stark H
    Eur Phys J E Soft Matter; 2018 May; 41(5):61. PubMed ID: 29766348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity.
    Kuhr JT; Rühle F; Stark H
    Soft Matter; 2019 Jul; 15(28):5685-5694. PubMed ID: 31246219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear dynamics of a microswimmer in Poiseuille flow.
    Zöttl A; Stark H
    Phys Rev Lett; 2012 May; 108(21):218104. PubMed ID: 23003306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability.
    Théry A; Maaß CC; Lauga E
    R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.
    Lintuvuori JS; Würger A; Stratford K
    Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of discrete-particle models of spherical colloids: a multiparticle collision dynamics simulation study.
    Poblete S; Wysocki A; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033314. PubMed ID: 25314571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of angular momentum conservation on hydrodynamic simulations of colloids.
    Yang M; Theers M; Hu J; Gompper G; Winkler RG; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013301. PubMed ID: 26274301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.