BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 24702435)

  • 1. Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches.
    Ahmed OA; Afouna MI; El-Say KM; Abdel-Naim AB; Khedr A; Banjar ZM
    Expert Opin Drug Deliv; 2014 Jul; 11(7):1005-13. PubMed ID: 24702435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.
    Ahmed TA; El-Say KM; Aljaeid BM; Fahmy UA; Abd-Allah FI
    Int J Pharm; 2016 Mar; 500(1-2):245-54. PubMed ID: 26775063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride.
    Akram MR; Ahmad M; Abrar A; Sarfraz RM; Mahmood A
    Drug Des Devel Ther; 2018; 12():349-364. PubMed ID: 29503528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole.
    Ahmed TA; El-Say KM
    Life Sci; 2014 Aug; 110(1):35-43. PubMed ID: 24997393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of chitosan films for transdermal delivery of glimepiride.
    Ammar HO; Salama HA; El-Nahhas SA; Elmotasem H
    Curr Drug Deliv; 2008 Oct; 5(4):290-8. PubMed ID: 18855598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies.
    Kurakula M; Ahmed OA; Fahmy UA; Ahmed TA
    J Liposome Res; 2016 Dec; 26(4):288-96. PubMed ID: 26784833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation and evaluation in vivo and in vitro of glimepiride gel-matrix controlled-release patch].
    Zhang Y; Xu DH; Ma Z; Chen Y; Zhao JJ; Xu SB
    Yao Xue Xue Bao; 2004 Aug; 39(8):640-4. PubMed ID: 15563069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and development of insulin emulgel formulation for transdermal drug delivery and its evaluation.
    Akram M; Naqvi SB; Khan A
    Pak J Pharm Sci; 2013 Mar; 26(2):323-32. PubMed ID: 23455203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films.
    Ahmed OAA; Kurakula M; Banjar ZM; Afouna MI; Zidan AS
    J Pharm Sci; 2015 Jun; 104(6):2062-2075. PubMed ID: 25873019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development Of Saquinavir Mesylate Nanoemulsion-Loaded Transdermal Films: Two-Step Optimization Of Permeation Parameters, Characterization, And Ex Vivo And In Vivo Evaluation.
    Hosny KM
    Int J Nanomedicine; 2019; 14():8589-8601. PubMed ID: 31802871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of antihistaminic transdermal films based on alginate-chitosan polyelectrolyte complexes: characterization and permeation studies.
    Lefnaoui S; Moulai-Mostefa N; Yahoum MM; Gasmi SN
    Drug Dev Ind Pharm; 2018 Mar; 44(3):432-443. PubMed ID: 29098871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and evaluation of carvedilol-loaded transdermal drug delivery system: In-vitro and in-vivo characterization study.
    Kshirsagar SJ; Bhalekar MR; Mohapatra SK
    Drug Dev Ind Pharm; 2012 Dec; 38(12):1530-7. PubMed ID: 22356303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system.
    Limpongsa E; Umprayn K
    AAPS PharmSciTech; 2008; 9(2):464-70. PubMed ID: 18431661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of meloxicam and lornoxicam transdermal patches: Preparation, physical characterization, ex vivo and in vivo studies.
    Yener G; Üner M; Gönüllü Ü; Yildirim S; Kiliç P; Aslan SS; Barla A
    Chem Pharm Bull (Tokyo); 2010 Nov; 58(11):1466-73. PubMed ID: 21048338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Statistical Tooling Techniques for Designing of Carvedilol Nanolipid Transferosomes and its Dermatopharmacokinetic and Pharmacodynamic Studies.
    Selvaraj BR; Sridhar SK; Kesavan BR; Palagati S
    Pharm Nanotechnol; 2020; 8(6):452-470. PubMed ID: 32988361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation.
    Ahmed OAA; Badr-Eldin SM
    Int J Pharm; 2019 Oct; 570():118657. PubMed ID: 31491483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies.
    Vijayan V; Reddy KR; Sakthivel S; Swetha C
    Colloids Surf B Biointerfaces; 2013 Nov; 111():150-5. PubMed ID: 23792547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.
    Aggarwal G; Dhawan S; HariKumar SL
    Curr Drug Deliv; 2012 Mar; 9(2):172-81. PubMed ID: 22023211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glibenclamide Nanocrystals in a Biodegradable Chitosan Patch for Transdermal Delivery: Engineering, Formulation, and Evaluation.
    Ali HSM; Hanafy AF
    J Pharm Sci; 2017 Jan; 106(1):402-410. PubMed ID: 27866687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and evaluation of transdermal drug delivery system for curcumin as an anti-inflammatory drug.
    Patel NA; Patel NJ; Patel RP
    Drug Dev Ind Pharm; 2009 Feb; 35(2):234-42. PubMed ID: 18785045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.