These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24703300)

  • 1. Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis.
    Albert S; Balaban RS; Neufeld EB; Rossmann JS
    J Biomech; 2014 May; 47(7):1594-602. PubMed ID: 24703300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral blood flow in aorta-renal bifurcation models.
    Javadzadegan A; Simmons A; Barber T
    Comput Methods Biomech Biomed Engin; 2016; 19(9):964-76. PubMed ID: 26414530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The renal artery ostium flow diverter: structure and potential role in atherosclerosis.
    Neufeld EB; Yu ZX; Springer D; Yu Q; Balaban RS
    Atherosclerosis; 2010 Jul; 211(1):153-8. PubMed ID: 20149375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified method of computed fluid dynamics simulation in abdominal aorta and visceral arteries.
    Shi Y; Peng C; Liu J; Lan H; Li C; Qin W; Yuan T; Kan Y; Wang S; Fu W
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(15):1718-1729. PubMed ID: 34569360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic effects on atherosclerosis-prone coronary artery: wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation.
    Lee BK; Kwon HM; Hong BK; Park BE; Suh SH; Cho MT; Lee CS; Kim MC; Kim CJ; Yoo SS; Kim HS
    Yonsei Med J; 2001 Aug; 42(4):375-83. PubMed ID: 11519078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D model of hemodynamics in the abdominal aorta.
    Zbicinski I; Veshkina N; Stefańczyk L
    Biomed Mater Eng; 2015; 26 Suppl 1():S257-64. PubMed ID: 26406010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-fidelity virtual stenting: modeling of flow diverter deployment for hemodynamic characterization of complex intracranial aneurysms.
    Xiang J; Damiano RJ; Lin N; Snyder KV; Siddiqui AH; Levy EI; Meng H
    J Neurosurg; 2015 Oct; 123(4):832-40. PubMed ID: 26090829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics at the ostium of cerebral aneurysms with relation to post-treatment changes by a virtual flow diverter: a computational fluid dynamics study.
    Karmonik C; Chintalapani G; Redel T; Zhang YJ; Diaz O; Klucznik R; Grossman RG
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1895-8. PubMed ID: 24110082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle image velocimetry study of aorta-renal bifurcation.
    Haga T; Javadzadegan A; Kabir K; Simmons A; Barber T
    Technol Health Care; 2015; 23(5):539-45. PubMed ID: 26410115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time intravascular shear stress in the rabbit abdominal aorta.
    Ai L; Yu H; Dai W; Hale SL; Kloner RA; Hsiai TK
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1755-64. PubMed ID: 19527952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of helical braided flow diverter stents based on hemodynamic performance and mechanical properties.
    Suzuki T; Takao H; Fujimura S; Dahmani C; Ishibashi T; Mamori H; Fukushima N; Yamamoto M; Murayama Y
    J Neurointerv Surg; 2017 Oct; 9(10):999-1005. PubMed ID: 27646987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: correlation with clinical outcomes.
    Chong W; Zhang Y; Qian Y; Lai L; Parker G; Mitchell K
    AJNR Am J Neuroradiol; 2014 Jan; 35(1):136-42. PubMed ID: 24287091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronary artery plaque growth: A two-way coupled shear stress-driven model.
    Arzani A
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3293. PubMed ID: 31820589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.