These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24703336)

  • 1. The relationship between allometry and preferred transition speed in human locomotion.
    Ranisavljev I; Ilic V; Soldatovic I; Stefanovic D
    Hum Mov Sci; 2014 Apr; 34():196-204. PubMed ID: 24703336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthropometric characteristics and gait transition speed in human locomotion.
    Sentija D; Rakovac M; Babić V
    Hum Mov Sci; 2012 Jun; 31(3):672-82. PubMed ID: 21835478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing.
    Stoggl T; Enqvist J; Muller E; Holmberg HC
    J Sports Sci; 2010 Jan; 28(2):161-9. PubMed ID: 20391090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of leg length and body mass on the stride length and gait speed of infants with normal motor development: a longitudinal study.
    Rodriguez EB; Chagas PS; Silva PL; Kirkwood RN; Mancini MC
    Braz J Phys Ther; 2013; 17(2):163-9. PubMed ID: 23778772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach.
    Hulens M; Vansant G; Lysens R; Claessens AL; Muls E; Brumagne S
    Int J Obes Relat Metab Disord; 2001 May; 25(5):676-81. PubMed ID: 11360150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between preferred and energetically optimal transition speeds in adolescents.
    Tseh W; Bennett J; Caputo JL; Morgan DW
    Eur J Appl Physiol; 2002 Nov; 88(1-2):117-21. PubMed ID: 12436278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion.
    Hreljac A; Imamura R; Escamilla RF; Edwards WB
    Gait Posture; 2007 Mar; 25(3):419-24. PubMed ID: 16793272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between anthropometric measures and body composition among Muslim females of West Bengal, India.
    Khatoon Z; Tapadar JR; Chatterjee D; Chanda S; Ghosh JR; Bandyopadhyay AR
    Anthropol Anz; 2008 Sep; 66(3):349-53. PubMed ID: 18924572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of anthropometric characteristics in modern pentathlon performance in female athletes.
    Claessens AL; Hlatky S; Lefevre J; Holdhaus H
    J Sports Sci; 1994 Aug; 12(4):391-401. PubMed ID: 7932950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference.
    Fuller NJ; Hardingham CR; Graves M; Screaton N; Dixon AK; Ward LC; Elia M
    Clin Sci (Lond); 1999 Jun; 96(6):647-57. PubMed ID: 10334971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower leg length as an index of stature in adults.
    Han TS; Lean ME
    Int J Obes Relat Metab Disord; 1996 Jan; 20(1):21-7. PubMed ID: 8788318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties.
    Smalls LK; Randall Wickett R; Visscher MO
    Skin Res Technol; 2006 Feb; 12(1):43-9. PubMed ID: 16420538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hamstring graft size prediction: a prospective clinical evaluation.
    Treme G; Diduch DR; Billante MJ; Miller MD; Hart JM
    Am J Sports Med; 2008 Nov; 36(11):2204-9. PubMed ID: 18725653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys.
    Ara I; Vicente-Rodríguez G; Jimenez-Ramirez J; Dorado C; Serrano-Sanchez JA; Calbet JA
    Int J Obes Relat Metab Disord; 2004 Dec; 28(12):1585-93. PubMed ID: 15303104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and validation of fat-free mass in the lower limbs of young adult male Rugby Union players using dual-energy X-ray absorptiometry as the criterion measure.
    Bell W; Cobner DM; Evans WD
    Ergonomics; 2000 Oct; 43(10):1708-17. PubMed ID: 11083149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between bone mineral density (DXA), body structure, and body composition in middle-aged men.
    Van Langendonck L; Claessens AL; Lefevre J; Thomis M; Philippaerts R; Delvaux K; Lysens R; Vanden Eynde B; Beunen G
    Am J Hum Biol; 2002; 14(6):735-42. PubMed ID: 12400034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial parameters of walking gait and footedness.
    Zverev YP
    Ann Hum Biol; 2006; 33(2):161-76. PubMed ID: 16684690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between gait transition speed and the aerobic thresholds for walking and running.
    Sentija D; Markovic G
    Int J Sports Med; 2009 Nov; 30(11):795-801. PubMed ID: 19838979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children.
    Jürimäe T; Hurbo T; Jürimäe J
    Homo; 2009; 60(3):225-38. PubMed ID: 18996520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stride length in distance running: velocity, body dimensions, and added mass effects.
    Cavanagh PR; Kram R
    Med Sci Sports Exerc; 1989 Aug; 21(4):467-79. PubMed ID: 2674599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.