BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24703587)

  • 1. The chromatin landscape and transcription factors in T cell programming.
    Rothenberg EV
    Trends Immunol; 2014 May; 35(5):195-204. PubMed ID: 24703587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How transcription factors drive choice of the T cell fate.
    Hosokawa H; Rothenberg EV
    Nat Rev Immunol; 2021 Mar; 21(3):162-176. PubMed ID: 32918063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways.
    Zhao Y; Zheng D; Cvekl A
    Epigenetics Chromatin; 2019 May; 12(1):27. PubMed ID: 31053165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mouse M-lysozyme gene domain: identification of myeloid and differentiation specific DNasel hypersensitive sites and of a 3'-cis acting regulatory element.
    Möllers B; Klages S; Wedel A; Cross M; Spooncer E; Dexter TM; Renkawitz R
    Nucleic Acids Res; 1992 Apr; 20(8):1917-24. PubMed ID: 1579493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.
    Pimkin M; Kossenkov AV; Mishra T; Morrissey CS; Wu W; Keller CA; Blobel GA; Lee D; Beer MA; Hardison RC; Weiss MJ
    Genome Res; 2014 Dec; 24(12):1932-44. PubMed ID: 25319996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape.
    Gamble N; Bradu A; Caldwell JA; McKeever J; Bolonduro O; Ermis E; Kaiser C; Kim Y; Parks B; Klemm S; Greenleaf WJ; Crabtree GR; Koh AS
    Nat Immunol; 2024 May; 25(5):860-872. PubMed ID: 38632339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin-Modifying Enzymes in T Cell Development.
    Shapiro MJ; Shapiro VS
    Annu Rev Immunol; 2020 Apr; 38():397-419. PubMed ID: 31990620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin Immunoprecipitation (ChIP) in Mouse T-cell Lines.
    Giaimo BD; Ferrante F; Borggrefe T
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T cell development: better living through chromatin.
    Krangel MS
    Nat Immunol; 2007 Jul; 8(7):687-94. PubMed ID: 17579647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment.
    Boya R; Yadavalli AD; Nikhat S; Kurukuti S; Palakodeti D; Pongubala JMR
    Nucleic Acids Res; 2017 Nov; 45(19):11070-11087. PubMed ID: 28977418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
    Thompson B; Varticovski L; Baek S; Hager GL
    PLoS One; 2016; 11(2):e0148619. PubMed ID: 26890492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements.
    De S; Wurster AL; Precht P; Wood WH; Becker KG; Pazin MJ
    Mol Cell Biol; 2011 Apr; 31(7):1512-27. PubMed ID: 21262765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programming for T-lymphocyte fates: modularity and mechanisms.
    Rothenberg EV
    Genes Dev; 2019 Sep; 33(17-18):1117-1135. PubMed ID: 31481536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically disordered domain of transcription factor TCF-1 is required for T cell developmental fidelity.
    Goldman N; Chandra A; Johnson I; Sullivan MA; Patil AR; Vanderbeck A; Jay A; Zhou Y; Ferrari EK; Mayne L; Aguilan J; Xue HH; Faryabi RB; John Wherry E; Sidoli S; Maillard I; Vahedi G
    Nat Immunol; 2023 Oct; 24(10):1698-1710. PubMed ID: 37592014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity.
    Kim TH; Li F; Ferreiro-Neira I; Ho LL; Luyten A; Nalapareddy K; Long H; Verzi M; Shivdasani RA
    Nature; 2014 Feb; 506(7489):511-5. PubMed ID: 24413398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chromatin remodeler Mi-2beta is required for CD4 expression and T cell development.
    Williams CJ; Naito T; Arco PG; Seavitt JR; Cashman SM; De Souza B; Qi X; Keables P; Von Andrian UH; Georgopoulos K
    Immunity; 2004 Jun; 20(6):719-33. PubMed ID: 15189737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of early T-cell development in the thymus.
    Seo W; Taniuchi I
    Eur J Immunol; 2016 Mar; 46(3):531-8. PubMed ID: 26763078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.
    Karwacz K; Miraldi ER; Pokrovskii M; Madi A; Yosef N; Wortman I; Chen X; Watters A; Carriero N; Awasthi A; Regev A; Bonneau R; Littman D; Kuchroo VK
    Nat Immunol; 2017 Apr; 18(4):412-421. PubMed ID: 28166218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.